
- •Содержание
- •5.1. Неинерциальные системы отсчета
- •Введение
- •1. Кинематика материальной точки
- •1.1. Системы отсчета
- •1.2. Материальная точка
- •1.3. Описание движения
- •1.4. Относительность перемещений и скоростей
- •1.5. Кинематика движения точки по окружности
- •2. Динамика материальной точки и системы материальных точек
- •2.1. Первый закон ньютона. Инерциальные системы отсчета
- •2.2. Сила. Масса тела
- •2.3. Второй закон ньютона
- •2.4. Типы сил
- •2.5. Роль начальных условий
- •2.6. Третий закон ньютона
- •2.6. Третий закон ньютона
- •2.7. Второй закон ньютона для системы материальных точек. Закон сохранения импульса
- •2.8. Теорема о движении центра масс системы материальных точек
- •2.9. Принцип относительности галилея. Преобразования галилея
- •3. Законы сохранения
- •3.1. Закон сохранения импульса
- •3.2. Движение тел с переменной массой
- •3.3. Работа и энергия
- •3.4. Энергия
- •3.5. Кинетическая энергия
- •3.6. Примеры на вычисление работы
- •3.7. Потенциальные и непотенциальные силы
- •3.8. Потенциальная энергия частицы в поле
- •3.9. Закон сохранения полной механической энергии частицы
- •3.10. Силы и потенциальная энергия
- •3.11. Одномерное движение частицы
- •4. Динамика твердого тела
- •4.1. Вращательное движение твердого тела
- •4.2. Закон сохранения момента импульса
- •4.3. Механическое равновесие
- •4.4. Кинетическая энергия вращательного движения твердого тела
- •5. Неинерциальные системы отсчета
- •5.1. Неинерциальные системы отсчета
- •5.2. Силы инерции
- •5.3. Нахождение сил инерции
- •5.4. Вращающиеся системы отсчета
- •5.5. Сила кариолиса
- •6. Гидродинамика
- •6.1. Кинематическое описание движения жидкости
- •6.2. Уравнение неразрывности
- •6.3. Стационарное движение идеальной жидкости. Уравнение бернулли
- •6.4. Формула торричелли
- •6.5. Реакция вытекающей струи
- •6.6. Движение тел в жидкостях и газах
- •6.7. Эффект магнуса
- •7. Гармонические, затухающие, вынужденные колебания. Резонанс
- •7.1. Колебательное движение
- •7.2. Гармонические колебания
- •7.3. Энергия гармонического осциллятора
- •7.4. Векторная диаграмма и сложение колебаний
- •7.5. Затухающие колебания
- •7.6. Вынужденные колебания
- •7.7. Резонанс
- •7.8. Автоколебания
- •8. Упругие волны
- •8.1. Образование волн
- •8.2. Уравнение плоской упругой волны
- •8.3. Энергия, переносимая упругой волной
- •8.4. Эффекты сложения волн. Стоячие упругие волны
- •8.5. Звуковые волны
6.3. Стационарное движение идеальной жидкости. Уравнение бернулли
Рассмотрим идеальную жидкость. Идеальная жидкость – жидкость, плотность которой не зависит от давления и постоянна в любой пространственной области, а вязкость (внутреннее трение) отсутствует. При движении идеальной жидкости не происходит превращения механической энергии в тепловую, то есть механическая энергия жидкости сохраняется.
|



Вычислим работу А, совершаемую при
этом силами давления. Силы давления,
действующие на боковую поверхность
трубки тока перпендикулярно к перемещению,
работы не совершают. При перемещении
границы MN в положение
силами
давления совершается работа
,
где
–
величина перемещения. Эту работу можно
представить в виде
или
,
где
–
масса жидкости в объеме
,
.
При перемещении границы CD в положение
жидкость
совершает работу против сил давления
.
Рассуждая аналогично, найдем
,
где
–
масса жидкости в объеме
.
|
Даниил Бернулли – один из наиболее выдающихся физиков и математиков своего времени. С 1725 г. по 1733 г. работал в Петербурге. Руководил работой кафедры чистой математики. Член Берлинской, Парижской, Петербургской и других академий наук, член Лондонского Королевского общества. Даниил Бернулли является одним из представителей настоящей потомственной династии научных гениев родом из Швейцарии. Отец Даниила – Иоганн Бернулли – был видным профессором математики в университете г. Гронинген.
Книга Даниила «Гидродинамика» (Hydrodynamica) была опубликована в 1738 г., практически одновременно с книгой Иоганна Бернулли «Гидравлика» (Hydraulica).
Если движение стационарно, то масса
жидкости в объеме
не
изменится, а потому из закона сохранения
массы получим
.
Тогда для работы, совершаемой внешним
давлением, получим:
.
Эта работа должна быть равна приращению
полной
энергии выделенной части жидкости.
Ввиду стационарности течения энергия
жидкости в объеме
не
изменилась. Поэтому приращение полной
энергии равно разности энергий массы
жидкости
в
объемах
и
.
Обозначим через
энергию,
приходящуюся на единицу массы жидкости,
тогда
.
Приравнивая эту величину к работе А
и сокращая на
,
получаем:
.
Отсюда следует, что вдоль одной и той
же линии тока при стационарном течении
идеальной жидкости величина
остается
постоянной:
.
Это соотношение называется уравнением Бернулли. Оно было впервые опубликовано в 1738 году.
Энергия
складывается
из кинетической энергии единицы массы
жидкости
и
ее потенциальной энергии gh в поле
тяжести. В этом случае уравнение Бернулли
принимает вид:
Пусть жидкость течет по горизонтальной трубе. Тогда уравнение Бернулли примет вид:
|
|
(6.2) |
Из выражения (6.2) следует, что в областях трубки с большей скоростью течения жидкости давление меньше. Согласно уравнению неразрывности струи (6.1) скорость течения жидкости больше в местах с меньшим сечением трубы, следовательно, давление по мере перехода к более узким ее участкам уменьшается. Образующийся при этом перепад давлений заставляет жидкость двигаться вдоль трубы с ускорением.
Пример
|
Эффект Бернулли можно наблюдать, сидя ненастным вечером дома у камина. Во время особенно сильных порывов ветра языки пламени взмывают вверх, в дымоход. Объяснить это можно так: когда скорость ветра у выходного отверстия трубы возрастает, давление в этом месте падает. Более высокое давление внутри дома и «выталкивает» пламя из камина в дымоход. |