
- •Содержание
- •5.1. Неинерциальные системы отсчета
- •Введение
- •1. Кинематика материальной точки
- •1.1. Системы отсчета
- •1.2. Материальная точка
- •1.3. Описание движения
- •1.4. Относительность перемещений и скоростей
- •1.5. Кинематика движения точки по окружности
- •2. Динамика материальной точки и системы материальных точек
- •2.1. Первый закон ньютона. Инерциальные системы отсчета
- •2.2. Сила. Масса тела
- •2.3. Второй закон ньютона
- •2.4. Типы сил
- •2.5. Роль начальных условий
- •2.6. Третий закон ньютона
- •2.6. Третий закон ньютона
- •2.7. Второй закон ньютона для системы материальных точек. Закон сохранения импульса
- •2.8. Теорема о движении центра масс системы материальных точек
- •2.9. Принцип относительности галилея. Преобразования галилея
- •3. Законы сохранения
- •3.1. Закон сохранения импульса
- •3.2. Движение тел с переменной массой
- •3.3. Работа и энергия
- •3.4. Энергия
- •3.5. Кинетическая энергия
- •3.6. Примеры на вычисление работы
- •3.7. Потенциальные и непотенциальные силы
- •3.8. Потенциальная энергия частицы в поле
- •3.9. Закон сохранения полной механической энергии частицы
- •3.10. Силы и потенциальная энергия
- •3.11. Одномерное движение частицы
- •4. Динамика твердого тела
- •4.1. Вращательное движение твердого тела
- •4.2. Закон сохранения момента импульса
- •4.3. Механическое равновесие
- •4.4. Кинетическая энергия вращательного движения твердого тела
- •5. Неинерциальные системы отсчета
- •5.1. Неинерциальные системы отсчета
- •5.2. Силы инерции
- •5.3. Нахождение сил инерции
- •5.4. Вращающиеся системы отсчета
- •5.5. Сила кариолиса
- •6. Гидродинамика
- •6.1. Кинематическое описание движения жидкости
- •6.2. Уравнение неразрывности
- •6.3. Стационарное движение идеальной жидкости. Уравнение бернулли
- •6.4. Формула торричелли
- •6.5. Реакция вытекающей струи
- •6.6. Движение тел в жидкостях и газах
- •6.7. Эффект магнуса
- •7. Гармонические, затухающие, вынужденные колебания. Резонанс
- •7.1. Колебательное движение
- •7.2. Гармонические колебания
- •7.3. Энергия гармонического осциллятора
- •7.4. Векторная диаграмма и сложение колебаний
- •7.5. Затухающие колебания
- •7.6. Вынужденные колебания
- •7.7. Резонанс
- •7.8. Автоколебания
- •8. Упругие волны
- •8.1. Образование волн
- •8.2. Уравнение плоской упругой волны
- •8.3. Энергия, переносимая упругой волной
- •8.4. Эффекты сложения волн. Стоячие упругие волны
- •8.5. Звуковые волны
2.6. Третий закон ньютона
Третий закон Ньютона формулируется следующим образом: силы взаимодействия двух материальных точек равны по величине, противоположно направлены и действуют вдоль прямой, соединяющей эти материальные точки.
.
|
Обосновывая равенство сил действия и противодействия, Ньютон писал: «Относительно притяжений дело может быть изложено вкратце следующим образом: между двумя взаимно притягивающимися телами надо вообразить помещённым какое-либо препятствие, мешающее их сближению. Если бы одно из тел А притягивалось бы телом В сильнее, нежели тело В притягивается телом А, то препятствие испытывало бы со стороны тела А большее давление, нежели со стороны тела В и, следовательно, не осталось бы в равновесии. Преобладающее давление вызвало бы движение системы, состоящей из двух тел и препятствия, в сторону тела В, и в свободном пространстве эта система, двигаясь ускоренно, ушла бы в бесконечность. Такое заключение нелепо и противоречит первому закону, по которому система должна бы оставаться в своём состоянии покоя или равномерного и прямолинейного движения. Отсюда следует, что оба тела давят на препятствие с равными силами, а значит, и притягиваются взаимно с таковыми же».
В основу третьего закона Ньютона положено ньютоновское допущение о мгновенном распространении взаимодействия, которое носит название принципа дальнодействия в классической механике. Согласно этому принципу взаимодействие между телами распространяется в пространстве с бесконечно большой скоростью. Иначе говоря, если изменить состояние одного тела, то сразу же можно обнаружить хотя бы очень слабое изменение во взаимодействующих с ним телах, как бы далеко они не находились.
Сейчас мы знаем, что в действительности это не так – существует конечная максимальная скорость распространения взаимодействий, которая равна скорости света в вакууме. Поэтому третий закон Ньютона (а также и второй) имеет определенные границы применимости.
Примеры
Пример 1
Пример 2
Пример 3
Пример 4
Пример 5
|
Баскетболист, забивший мяч, завис на кольце. Противодействующей силе упругости, действующей на спортсмена со стороны кольца, является сила упругой деформации кольца, действующая на кольцо со стороны спортсмена и приложенная к кольцу. Противодействующей силе тяжести, действующей на спортсмена, будет сила гравитационного притяжения Земли баскетболистом, приложенная к Земле |
|
Сила, с которой самосвал действует на троллейбус при столкновении, равна силе, с которой троллейбус действует на самосвал. При этом последствия действия этих сил для самосвала и троллейбуса могут сильно отличаться. Но ведь в третьем законе Ньютона речь идет только о равенстве сил действия и противодействия, но ничего не говорится о последствиях этого взаимодействия |
|
Сила, действующая на спортсмена со стороны строп парашюта, равна по величине силе, действующей на стропы со стороны спортсмена |
|
Сила, с которой спортсмен действует на штангу, и сила, с которой штанга действует на спортсмена, равны по величине и противоположны по направлению. Эти силы приложены к разным телам. Сила, действующая на штангу со стороны спортсмена, уравновешена силой тяжести штанги. Сила, действующая на спортсмена со стороны штанги, в сумме с силой тяжести и силой нормальной реакции опоры, действующими на спортсмена, дают ноль. В результате и штанга, и спортсмен в рассматриваемый момент времени покоятся |
|
На спортсмена и на катер действуют со стороны соединяющего их каната силы натяжения, равные по величине и противоположные по направлению. Под действием результирующих сил, действующих на катер и спортсмена, эти тела могут двигаться с разными скоростями, ускорениями и в разных направлениях |