
- •Содержание
- •1. Электромагнитные волны
- •1.1. Плоские электромагнитные волны и их свойства
- •1. Векторы и перпендикулярны направлению распространения волны (вектору ).
- •3. В электромагнитной волне модули векторов и связаны между собой . Это соотношение выполняется в любой точке пространства в любой момент времени.
- •1.2. Опыт Герца
- •1.3. Энергия электромагнитных волн
- •1.4. Излучение диполя
- •1.5. Световое давление
- •1.6. Шкала электромагнитных волн
- •2. Интерференция света
- •2.1. Интерференция света. Когерентность
- •1) , Тогда и ;
- •2) , Тогда и .
- •2.2. Интерференция двух монохроматических волн
- •2.3. Интерференционные устройства
- •2.4. Интерференция света в тонких пленках
- •2.5. Кольца Ньютона
- •Просветление оптики
- •2.6. Двухлучевые интерферометры
- •3. Дифракция света
- •3.1. Явление дифракции
- •3.2. Принцип Гюйгенса–Френеля
- •3.3. Зоны Френеля
- •3.4. Графическое вычисление результирующей амплитуды. Спираль Френеля
- •3.5. Дифракция Френеля на круглом отверстии
- •3.6. Дифракция Френеля от непрозрачного экрана
- •3.7. Дифракция Фраунгофера на одной щели
- •3.8. Дифракционная решетка
- •3.9. Физические принципы голографии
- •4. Дисперсия и поглощение света
- •4.1. Дисперсия света
- •Зеленый луч
- •4.2. Поглощение света
- •4.3. Рассеяние света
- •Голубое Солнце
- •4.4. Свет и цвет
- •5. Поляризация света
- •5.1. Естественный и поляризованный свет. Поляризатор и анализатор. Закон Малюса
- •5.2. Поляризация при отражении и преломлении
- •5.3. Двойное лучепреломление
- •5.4. Искусственная анизотропия
- •Это интересно! 6. Геометрическая оптика
- •6.1. Основные законы геометрической оптики
- •6.2. Полное внутреннее отражение
- •6.3. Линзы. Построение изображений в тонкой линзе. Формула линзы
- •7. Оптические приборы
- •7.1. Глаз как оптический прибор. Угол зрения
- •7.2. Лупа, микроскоп, телескоп. Разрешающая способность оптических приборов
- •1. Приборы, служащие для рассматривания очень мелких предметов (лупа, микроскоп). Эти приборы зрительно увеличивают рассматриваемые предметы.
- •2. Приборы, предназначенные для рассматривания удаленных объектов (зрительная труба, бинокль, телескоп и т.П.). Эти приборы зрительно приближают рассматриваемые предметы.
3.2. Принцип Гюйгенса–Френеля
В XVIII столетии Христиан Гюйгенс на основе опытов с волнами на поверхности воды предложил метод построения волнового фронта. Если плоская волна падает на экран с отверстием, размер которого много меньше длины волны, то за экраном распространяется сферическая волна.
Рис. 3.5 |
Г
юйгенс
Христиан (Huygens Christiaan) (1629–1695)
Голландский астроном и физик. Родился в Гааге в семье дипломата. Получил хорошее домашнее образование, затем окончил Лейденский университет. В 1666 г. переехал в Париж, где принимал участие в организации Академии наук Франции.
Самую большую известность Гюйгенсу принесли работы по оптике и астрономии. Он значительно усовершенствовал конструкцию телескопов и открыл кольца Сатурна. Кроме того, Гюйгенс является изобретателем маятниковых часов.
Во всех применениях вторичные волны Гюйгенса выступают не как реальные волны, а как вспомогательные сферы, используемые для такого построения. Эти сферы, построенные из точек волнового фронта как из центров, проявляют свое действие только на огибающей, которая дает новое положение волнового фронта. При этом остается необъясненным, почему при распространении волны не возникает обратная волна. Принцип Гюйгенса не дает никаких указаний об интенсивности волн, распространяющихся в различных направлениях. Этот недостаток был устранен Френелем.
Френель предположил, что вторичные волны когерентны и поэтому при наложении интерферируют друг с другом. Свет должен наблюдаться во всех местах пространства, где при интерференции вторичные волны усиливаются; где они взаимно гасят друг друга, должна наблюдаться темнота. К огибающей все вторичные волны приходят в одинаковых фазах, и их интерференция приводит к большой интенсивности света. Качественно становится понятным и отсутствие обратной волны. Вторичные волны, идущие назад, вступают в пространство, где уже есть волновое возмущение – прямая волна. При интерференции вторичные волны гасят прямую волну, так что после прохождения волны пространство за ней оказывается невозмущенным.
Расчет волнового поля в любой точке
наблюдения Р на основе принципа
Гюйгенса–Френеля делается следующим
образом. Выделим поверхность S, все
точки которой колеблются в одной фазе.
Поверхность ограничивает объем с
источниками света
и
т.д. (рис. 3.6). Все точки такой поверхности
можно рассматривать как когерентные
источники вторичных волн, распространяющихся
во всех направлениях. Для того чтобы
определить колебания в некоторой точке
P, вызванные волной, нужно сначала
определить колебания, вызываемые в этой
точке отдельными вторичными волнами,
приходящими в нее от всех элементов
поверхности S. Световое поле,
возникающее в результате их интерференции,
в пространстве вне поверхности S
совпадает с полем реальных источников
света.
А
мплитуда
вторичной волны пропорциональна площади
элемента поверхности
и
зависит от угла j между нормалью
к
площадке
и
направлением от площадки к точке
наблюдения Р. Так как вторичные
волны являются сферическими, то их
амплитуда убывает с расстоянием по
закону
,
где
–
расстояние от площадки
до
точки Р. От каждого участка
в
точку наблюдения Р, лежащую перед
поверхностью S, приходит колебание:
|
(3.1) |
Здесь
–
фаза колебаний на поверхности
,
–
волновое число,
–
амплитуда светового колебания в том
месте, где находится площадка
.
Коэффициент
зависит
от угла
.
При
этот
коэффициент максимален, при
–
обращается в нуль.
Результирующее колебание в точке Р представляет собой суперпозицию колебаний (3.1), приходящих от всей волновой поверхности S:
|
(3.2) |
Эта формула является аналитическим выражением принципа Гюйгенса–Френеля. Для качественного рассмотрения простейших случаев дифракции света с помощью принципа Гюйгенса–Френеля может быть применено построение зон Френеля.