Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие по минералогии и кристаллографии.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.74 Mб
Скачать

2.2.2. Физические свойства минералов

Свойства минерала полностью определяются их химическим составом и структурой, причём важная роль отводится типу химической связи между структурными единицами. По многим физическим и химическим свойствам производится их диагностика.

А. Оптические свойства минералов

Оптические свойства относятся к числу наиболее важных диагностических признаков. На них основана методика определения минералов под микроскопом и макроскопически. Световой луч, падая на поверхность минерала, частично отражается от неё, частично преломляется или поглощается минералом. С этими свойствами в минералах связаны явления светопреломления, светоотражения, светопоглащения, цвета минералов и люминесценция.

1. Светопреломление – способность минерала изменять ход световых лучей, обусловленная различными скоростями распространения света в воздухе и в минерале. Проявляется в прозрачных и полупрозрачных минералах.

В разных направлениях минерала скорость распространения может быть разной или наоборот одинаковой. В первом случае такие минералы называются оптически анизотропными, к ним относятся минералы средней и низшей категории сингоний. Во втором случае – оптически изотропными, к ним относятся минералы кубической сингонии или аморфные минералы.

Величина отклонения светового луча в минерале является величиной безразмерной, постоянной и определяется показателем преломления (n), который рассчитывается по формуле:

n = sin α / sin β (угол падения / угол отражения).

Явление светопреломления минералов используется в микроскопах при диагностике минералов в шлифах или шлиховых минералов, в лазерах (рубин, флюорит, кальцит, исландский шпат).

2. Светоотражение – способность минерала отражать часть световых лучей (блеск).

Следует различать блеск, принадлежащий зеркально гладким поверхностям индивидов, и блеск, принадлежащий агрегатам.

В первом случае блеск определяется на гранях или плоскостях спайности минерала. Выделяют следующие основные виды блесков:

1) стеклянный (кварц),

2) алмазный (циркон, сфалерит),

3) полуметаллический (киноварь, ильменит),

4) металлический (пирит, халькопирит),

В агрегатах и на неровных поверхностях минералов различают следующие разновидности блесков (отливы) :

1) шелковистый отлив – обусловлен параллельно-волокнистыми агрегатами минерала (хризотил-асбест, селенит),

2) перламутровый отлив – характерен для минералов со слоистым строением агрегатов и весьма совершенной спайностью (мусковит, арагонит),

3) матовый блеск – наблюдается у мелкозернистых агрегатов с грубой неровной поверхностью (пиролюзит, кальцит в известняке),

4) восковой блеск – наблюдается у тонкодисперсных агрегатов минералов (глинистые минералы),

5) жирный блеск – отмечается на сколах светлоокрашенных минералов со стеклянным блеском (кварц, нефелин),

6) смолистый блеск – отмечается на сколах тёмноокрашенных минералов (гидрогётит, ильменит).

Для количественной характеристики силы отражательной способности минерала используется безразмерная величина – коэффициент отражения (R), рассчитывается по формуле:

R = Yo/Yp*100 (%),

где R – коэффициент отражения, Yo – отраженный световой поток, Yp – общий световой поток.

Самый высокий коэффициент отражения у самородных металлов:

RAg = 98 %, RAu = 86 %.

Между двумя оптическими параметрами – показателем преломления (n) и коэффициентом отражения (R) существует следующая зависимость:

n = 1,3-1,9; R = 2-10 % – стеклянный блеск;

n = 1,9-2,5; R = 10-19 % – алмазный блеск;

n = 2,5-3,0; R = 19-25 % – полуметаллический;

n > 3; R > 25 % – металлический.

3. Светопоглощение – способность минерала пропускать или задерживать световой луч. Зависит от химического состава, строения кристаллической решетки минерала и механических примесей в нём.

По величине показателя поглощения света все минералы делятся на:

1) прозрачные (горный хрусталь, алмаз),

2) полупрозрачные (флюорит, сфалерит),

3) непрозрачные (пирит, марказит, ильменит).

В природе часто наблюдаются постепенные переходы от прозрачных разностей к непрозрачным. Они вызываются изменением химического состава.

Как правило, среди прозрачных минералов не наблюдается полуметаллического блеска, а среди непрозрачных – алмазного.

4. Цвет минерала – способность минерала поглощать свет определенной длины волны, в результате чего прошедший через минерал световой поток, лишившийся ряда волн, окрашивает минерал в тот или иной цвет. Он является важнейшим диагностическим свойством и нередко определяет практическую ценность ряда минералов. Например: ювелирные камни – изумруд, сапфир, александрит.

Минералы глубинного происхождения, возникающие при высоких температурах, характеризуются тёмным цветом (чёрный – ильменит, тёмно-зелёный – роговая обманка, буро-зелёный – энстатит, зелёный – оливин и т.д.), тогда как минералы, образующиеся вблизи поверхности земли и на ней, при низких температурах, обычно светлые, прозрачные (кварц – белый, прозрачный, кальцит – молочно-белый и т.д.). Это объясняется тем, что в конце минералообразующих процессов накапливаются ионы, лишённые сильной поляризации и поэтому дающие бесцветные соединения.

Причина окраски минералов:

1) природа образующих минерал атомов и ионов;

2) их координация;

3) поляризационные свойства химических элементов;

4) тип структуры.

В.И.Севергин в 1824 г. выделил три типа окраски минералов: 1) собственная, 2) зависящая от примесей, 3) случайная, которые А.Е.Ферсман в 1936 г. назвал соответственно идиохроматической, аллохроматической и псевдохроматической окрасками.

Идиохроматическая (идиос – свой собственный, хромос – цвет, греч.) окраска, обусловленная вхождением в минерал элементов-хромофоров (красителей), которыми могут быть основные ионы металлов, или группа ионов, а также изоморфные примеси (Ti, V, Cr, Fe2+, Fe3+, Co, Ni, Cu и в меньшей степени Nb, U, Th). Например: Cr3+ - изумрудно-зеленая окраска уваровита, Fe2+ - зелёная окраска оливина, Fe3+ - бурая, красная окраска гидрогётита и гематита.

Аллохроматическая (аллос – чужой, посторонний, греч.) окраска, не свойственная самому минералу, зависит от вхождения в него механических примесей. Она изменчива и непостоянна. Например: авантюрин – буровато-красный кварц с проблесками золотистого цвета из-за включений железной слюдки (разность гематита) или серицита, празем – зеленоватый кварц с включениями иголочек актинолита или хлорита.

Псевдохроматическая (псевдо – ложный, греч.) окраска, не свойственная самому минералу, зависящая от:

а) дефектов кристаллической решетки или присутствия в минерале разноориентированных кристаллов плагиоколазов различной основности. Такое явление называется ирризация – яркий световой отлив на плоскостях спайности или гранях и наблюдается у лабрадора, олигоклаза (лунного камня);

б) образования пленки выветривания на поверхности минерала, которая придаёт минералу пёструю игру цветов. Такое явление называется побежалостью. Наблюдается у халькопирита, ильменита, вольфрамита.

5. Цвет черты – цвет минерала в порошке. Представляет собой след, оставленный минералом на фарфоровой пластинке. По сравнения с окраской минерала цвет черты является более постоянным свойством и используется для диагностики непрозрачных (рудных) и полупрозрачных минералов. Минералы с твердостью больше 7 не дают черты (твердость фарфоровой пластинки – 7). Цвет черты является характерным признаком для оксидов и сульфидов.

6. Люминесценция – оптическое излучение минерала, вызванное воздействием на минерал определённых внешних факторов (облучение, нагревание, трение, разламывание и пр.). В результате влияния этих факторов минерал приобретает новое возбужденное состояние, результатом которого является свечение минерала в видимом спектре.

По современным представлениям сущность люминесценции заключается в том, что приведённые в возбуждённое состояние электроны атомов, находясь в нестабильном состоянии, стараются перейти на более низкие электронные орбиты, т.е. вернуться в первоначальное состояние и при этом излучают часть поглощённой энергии в виде светового пучка.

Переход из возбуждённого в первоначальное состояние, сопровождаемое свечением, может осуществляться в момент воздействия внешнего возбудителя (флюоресценция – флюорит, алмаз, циркон) или в течение некоторого времени после произведённого возбуждения (фосфоресценция – фосфор).

Люминесценция, вызываемая нагреванием, получила название термолюминесценция, а облучение различными лучами – рентгенолюминесцения, катодолюминесценция, фотолюминесценция (при облучении ультрафиолетовыми лучами). Излучение, обусловленное трением и разламыванием, называют триболюминесценция (трибо – трение, греч.). Последнее явление сильно выражено у светлых разностей сфалерита.

Люминесценция зависит от присутствия в минерале элементов-люминофоров – Mn, Cr, Cd, S, Cu, Th, U. Химические элементы, препятствующие проявлению люминесценции, называются гасителями люминесценции. К ним относятся Mn+2, Fe+2, Fe+3.

Б. Механические свойства минералов

Механические диагностические свойства минералов являются внешним проявлением прочности химической связи между составляющими минерал структурными единицами.

1. Твёрдость – способность минерала сопротивляться внешнему механическому воздействию. На твёрдость влияют межатомные расстояния (твёрдость увеличивается с уменьшением межатомных расстояний), строение кристаллической решетки (самая маленькая твердость у слоистых силикатов, самая большая у каркасных силикатов и оксидов), валентность (твёрдость повышается с увеличением валентности катионов и анионов), координационное число (твёрдость повышается с увеличением координационного числа, например: КЧ углерода в алмазе – 4, в графите – 3) и тип химической связи (самая высокая твёрдость у минералов с ковалентным типом связи – алмаз, самая низкая твёрдость - у минералов с молекулярным и ионным типом связи – графит, галит).

Для определения твёрдости в минералогии используют шкалу относительной твёрдости и абсолютную твердость:

1) абсолютная – определяется с помощью твердометра – алмазная квадратная пирамидки, при определённой нагрузке давит на грань минерала и в полученном отпечатке (реплике) замеряется одна из сторон фигуры. Абсолютная твёрдость измеряется в кг/мм2 и рассчитывается по формуле: H = 1854хP/d2, где Р – вес, давящий на алмазную пирамидку (кг), d – длина одной из сторон отпечатка (мм). Самая высокая твердость у алмаза – 10 060 кг/мм2;

2) относительная – определяется относительно предметов, путем царапания по грани или по плоскости спайности минерала. Относительная твёрдость минералов измеряется от 1 до 10:

-шкала Мооса: тальк – 1, гипс – 2, кальцит – 3. флюорит – 4, апатит – 5, ортоклаз – 6, кварц – 7, топаз – 8, корунд – 9, алмаз – 10;

-металлические иголочки: Al – 2-2,5; Cu – 3-3,5; латунь – 4-4,5; Fe – 5-5,5; сталь – 6-6,5.

По М.М.Хрущёву, номер эталона шкалы Мооса приблизительно пропорционален кубическому корню, вычисленному из числа твёрдости, определённому методом алмазной пирамидки.

Твердость всегда определяется на гранях кристаллов. В агрегатах твердость будет ниже.

Различают пассивную и активную твёрдость минералов. Пассивная твёрдость проявляется в том, что осколок минерала не может поцарапать грань или плоскость спайности такого же минерала, например: тальк, апатит, топаз, корунд. Активная твёрдость проявляется в том, что осколок минерала может поцарапать грань или плоскость спайности такого же минерала, например: гипс, галит, флюорит, ортоклаз, кварц.

2. Спайность – способность минерала раскалываться по определенным кристаллографическим направлениям, с образованием плоской зеркальной поверхности. Спайность минералов зависит от строения кристаллической решетки и типа химической связи. Различные минералы имеют спайность различной степени совершенства. Выделяют следующие типы спайности минералов:

1) весьма совершенная спайность – минерал способен делиться на тончайшие листочки, очень трудно получить неровный излом (слюды, графит);

2) совершенная спайность – раскалывание минерала происходит преимущественно по спайности и проявляется как зеркальные, ровные поверхности на сколе; трудно получить неровный излом (кальцит, плагиоклазы). Не путать с гранями кристалла;

3) ясная (средняя) спайность – на кусках минерала обнаруживается с трудом, наряду с ровными поверхностями скола возникают и неровные; поверхности скола чаще всего раковистая (ортоклаз);

4) несовершенная спайность – отсутствие спайности; сколы у минералов исключительно неровные, зернистые, раковистые (кварц, нефелин).

В различных минералах, имеющих совершенную спайность, плоскости спайности могут проходить в нескольких кристаллографических направлениях. Например: флюорит, алмаз – по октаэдру; кальцит – по ромбоэдру; галенит – по кубу.

Правило Браве – спайность проходит параллельно плоским сеткам кристаллической решётки с максимальной ретикулярной плотностью.

3. Излом – способность минерала при раскалывании давать ровные или неровные поверхности, проходящие не по спайности.

Различают следующие виды излома:

1) неровный, зернистый, характеризуется неровной поверхностью излома без блестящих спайных участков (апатит);

2) ступенчатый наблюдается у минералов с совершенной спайностью в 3 направлениях, образуются ровные сколы в 2-3 направлениях (галенит);

3) занозистый по своему виду напоминает излом древесины поперёк волокон. Обладают минералы с игольчатым строением (роговая обманка, актинолит, тремолит);

4) раковистый по форме поверхности напоминает раковину и наблюдается у минералов с аморфным строением или с плотной кристаллической решеткой, не обладающих какой-либо степенью спайности (кварц, обсидиан, халцедон, агат).

4. Штриховатость – на гранях кристалла образуются борозды, штрихи, полоски параллельные или наклонные определённым кристаллографическим направлениям кристалла. По своему происхождению штриховатость может быть комбинационной, обусловленной многократным повторением наросших вицинальных граней (алмаз, турмалин), и двойниковой, являющейся результатом сложения минеральных индивидов при образовании полисинтетических двойников (сфалерит, халькопирит, плагиоклазы). Для ряда минералов штриховатость является важным диагностическим свойством (кварц, корунд, пирит и др.) (рис. 8).

Корунд Турмалин Пирит Кварц

Рис. 8. Виды штриховки на гранях кристаллов минералов

5. Хрупкость и ковкость. С твёрдостью минералов связаны также два других свойства – хрупкость и ковкость. Хрупкость – свойство минерала крошиться при царапании остриём ножа по его поверхности. На поверхности минерала остаётся след с порошком по краям (блёклые руды). Ковкость – свойство минерала оставлять гладкий блестящий след при царапании остриём ножа по его поверхности. Ковкие минералы при ударе по ним молотком расплющиваются в тонкие пластинки или могут быть вытянуты в очень тонкие нити (халькозин, золото, медь). Хрупкость минерала может также определяться твердометром и устанавливается по появлению трещин в исследуемом минерале под нагрузкой. Нагрузка, при которой появляется первая трещина, носит название «числа хрупкости» и измеряется в граммах.

Различают следующие группы минералов по хрупкости (по С.Д.Дмитриеву):

1) весьма хрупкий (при всех нагрузках, например: пирит, гипс);

2) хрупкий (нагрузка 20 г и более, например: пентландит, тетраэдрит);

3) слабо пластичный (нагрузка 50 г и более, например: кварц, пирротин);

4) пластичный (нагрузка 100 г и более, например: магнетит);

5) весьма пластичный (при нагрузке 200 г трещины не образуются, например: галенит, медь).