
- •Вадим Леонидович Пилипюк Технология хранения зерна и семян
- •Аннотация
- •Вадим Леонидович Пилипюк Технология хранения зерна и семян Введение
- •1.2. Морфологические и анатомические особенности строения зерновок различных культур
- •1.3. Физико‑механические свойства единичных зерен и семян
- •1.4. Покой и долговечность зерна и семян
- •Контрольные вопросы и задания
- •Глава 2. Состав и свойства зерновой массы
- •2.1. Состав и причины разнокачественности зерновой массы
- •2.2. Насекомые и клещи как компоненты зерновой массы
- •2.3. Физические, теплофизические и массообменные свойства зерновой массы
- •2.3.1. Сыпучесть
- •2.3.2. Самосортирование
- •2.3.3. Плотность укладки и скважистость
- •2.3.4. Теплопроводность
- •2.3.5. Температуропроводность
- •2.3.6. Теплоемкость
- •2.3.7. Термовлагопроводность
- •2.3.8. Сорбционные свойства
- •2.4. Физиологические процессы, протекающие в зерне при хранении
- •2.4.1. Дыхание зерна
- •2.4.2. Послеуборочное дозревание зерна и семян
- •2.4.3. Самосогревание зерновых масс
- •2.4.4. Прорастание зерна и семян
- •Контрольные вопросы и задания
- •Конец ознакомительного фрагмента.
2.3.7. Термовлагопроводность
Непосредственно связана с теплофизическими свойствами зерновой массы. Термовлагопроводность – направленное перемещение в зерновой массе влаги, обусловленное градиентом температур, их перепадом. Интенсивность термовлагопроводности характеризует термоградиентный коэффициент, показывающий, какой градиент влажности создается при температурном градиенте, равном единице, и выражается в %/єК. Значение термоградиентного коэффициента, определенного А.В. Лыковым, у сухого зерна твердой пшеницы составляет 0,022‑0,026 %/є К.
Влага в зерновых массах из‑за перепадов температуры в различных пластах постоянно перемещается в направлении теплового потока – от более нагретых к менее нагретым слоям.
Перемещение влаги в зерновой массе вследствие термовлагопроводности имеет большое практическое значение для хранения зерна. Так, из‑за неравномерного обогрева весной стен зернохранилища солнечными лучами или при размещении неохлажденной зерновой массы на холодном бетонном или асфальтовом полу в ней возникает резкий перепад температур, вызывающий миграцию влаги из слоев насыпи с большей температурой к слоям более холодным. Охлаждаясь до температуры ниже точки росы, влажный воздух образует в этих слоях капельно‑жидкую влагу. Зерно представляет собой коллоиднопористое тело, способное поглощать воду с огромной сосущей силой, равной 500–700 атм. Поэтому появившаяся капельно‑жидкая влага немедленно увлажняет зерно. При высокой влажности находящиеся в зерне ферменты активизируются, повышается интенсивность дыхания и возникает самосогревание зерновой массы.
Явление термовлагопроводности наблюдается как в зерне, так и в продуктах переработки зерна – в муке и крупе. Обычно мука хранится в затаренном виде – в мешках. Размещая ее на хранение, нельзя укладывать мешки с мукой непосредственно на холодный бетонный пол склада, т. к. вследствие увлажнения от термодиффузии в такой муке происходит интенсивное развитие микрофлоры, плесеней хранения. Мука приобретает затхлый запах, темнеет, теряет свои товарные достоинства и становится токсичной в результате накопления в ней микотоксинов.
Для предупреждения всех этих нежелательных явлений с мукой размещать ее на хранение следует только на деревянных поддонах, не допуская соприкосновения со стенами и полом хранилища.
2.3.8. Сорбционные свойства
Сорбция – поглощение водяных паров и газов телами. Зерно всех культурных растений, семена сорняков и вся зерновая масса способны интенсивно поглащать или, как принято говорить, сорбировать (от лат. sorbere – поглощать) различные газы и пары. Сорбционные свойства зерна высокие, что объясняется его капиллярно‑пористой структурой и способностью отдельных биохимических веществ зерна поглощать и удерживать строго определенное количество воды. Система макро– и микрокапилляров зерна с высокой активностью стенок капилляров обеспечивает интенсивное поглощение и удерживание молекул воды.
Наибольшей гигроскопичностью в зерне пшеницы обладает зародыш, затем оболочка и эндосперм. Щуплые и мелкие зерна обладают большей гигроскопичностью, чем выполненные, крупные. Это связано с тем, что отношение зародыша к размеру зерновки и отношение площади поверхности к массе зерна у щуплых и мелких зерен значительно больше. Битые и деформированные при обмолоте зерна также обладают повышенной гигроскопичностью.
Из‑за высокой сорбционной способности зерновых масс хранить их в помещениях, где находятся пахучие вещества, нельзя. Следует своевременно проводить очистку партий зерна, в которых обнаружены корзинки полыни, дикого чеснока, кориандра и др.
Гигроскопичность зерновых масс, т. е. способность поглощать и отдавать пары воды – одно из его важнейших физико‑химических свойств, учитываемых при хранении зерна и семян.
Зерно и зерновая масса способны поглощать или отдавать пары воды, происходит процесс сорбции или десорбции влаги. Это явление получило название гигроскопичности. Десорбция воды происходит, если парциальное давление водяного пара в непосредственной близости от поверхности зерна больше, чем в окружающем воздухе. Скважистость зерновой массы, обеспечивающая ее проницаемость, дает возможность каждому зерну принимать активное участие в процессах сорбции и десорбции.
Процессы сорбции и десорбции воды находятся у зерна в состоянии динамического равновесия. Каждому значению парциального давления водяного пара, находящегося в воздухе, и температуры соответствует определенное количество сорбируемой или десорбируемой воды. Сухое зерно поглощает водяные пары до тех пор, пока не наступит так называемое гигроскопическое равновесие, т. е. прекратится обмен влаги между зерном и воздухом. Установившаяся влажность зерна при данных параметрах влажности и температуры воздуха называется равновесной.
Равновесная влажность для злаковых культур и гречихи колеблется в пределах 7‑36 %. При относительной влажности 60–70 % и температуре воздуха 20 є С зерно пшеницы имеет влажность 13,4‑14,8 % и будет сухим (табл. 6).
Таблица 6
Равновесная влажность зерна различных культур при температуре 12 – 25 є С, % на сырую массу (по данным Б. А. Кригер)
* Равновесная влажность при температуре 20 є С.
У гречихи наблюдается неравномерное распределение влаги в ее морфологических частях. Так, при относительной влажности воздуха 75–77 % влажность гидрофильной части целого зерна составляет 15,6‑15,9 %, а влажность гидрофильных каллоидов зародыша достигает 16,5‑17,0 %. Повышенная влажность гидрофильных коллоидов зародыша по сравнению с плодовой оболочкой объясняется различиями в химическом свойстве. В ядре содержится гидрофильного белка в 4,5 раза выше, чем в плодовой оболочке. Эту закономерность в распределении влаги в анатомических частях гречихи следует учитывать при закладке ее на хранение. Гречиху на длительное хранение с влажностью более 13,0‑13,55 % засыпать не следует.
С явлением сорбции и десорбции зерном, колосом и соломой влаги во время уборки урожая зерновых культур сталкивается в поле комбайнер. Так, если в ночные часы выпадает роса, то хлебные валки за ночь впитывают влагу, становятся не пригодными для обмолота, но в хорошую погоду по истечении некоторого времени они подсыхают и уборка продолжается.
Исследования влажности зерна, взятого в различное время из бункера комбайна, также говорят об этом (табл. 7).
Таблица 7
Влияние времени суток в период уборки урожая пшеницы на количество зерна различной влажности
При одной и той же относительной влажности и температуре воздуха зерно различных культур имеет различную влажность, что непосредственно связано с его химическим составом и гидрофильностью входящего в его состав белка.
Особенно заметными эти различия становятся при высокой влажности воздуха. Так, при относительной влажности воздуха 85 %, равновесная влажность зерна кукурузы составляет 18,1 %, а гороха, богатого белком, – 19,0 %.
С сухим веществом зерна и семян выявлены различные формы связи воды. На основе термодинамического принципа о формах связи воды, предложенного П. А. Ребиндером, сухие коллоиды поглощают первые порции воды с тепловым эффектом, соответствующим энергии образования химической связи. В зерне это химически связанная вода, удаление ее нарушает молекулярную структуру тканей зерновки. Затем, с повышением обводненности коллоида, тепловой эффект прогрессивно уменьшается, т. к. молекулы воды, окруженные гидратационными оболочками электроотрицательных группировок коллоидов, начинают удерживаться силами электростатического притяжения.
Вода эта адсорбционно связанная, при ее удалении структура ткани зерновки нарушается, а при последующем увлажнении восстанавливается.
Установлено, что молекулы воды в периферических слоях водных оболочек слабо удерживаются, и их можно удалить даже при небольшом внешнем воздействии. Внедряющиеся при набухании молекулы воды раздвигают молекулы коллоидов и тем самым ослабляют силы взаимного притяжения между ними. С увеличением толщины гидратного слоя уменьшаются силы притяжения воды, набухание затормаживается. Эта вода – капиллярно связанная, осмотически удерживаемая, при тепловой сушке может быть удалена без нарушения молекулярной структуры тканей.
В зерне не вся связанная вода удерживается с одинаковой энергией, и ее определяют как свободную и связанную. Та часть воды, которая удерживается большой силой, является связанной, а удерживаемая меньшей – свободной. Химически и адсорбционно связанной в зерне является связанная вода, капиллярно связанной и осмотически удерживаемой – свободная. При появлении в зерне и семенах свободной воды возрастает активность ферментов, участвующих в дыхании, активизируется сам процесс дыхания.
Граница появления в зерне свободной воды, при которой наблюдается резкий скачок интенсивности дыхательных процессов, получила название критической влажности.
Ее величина зависит от вида зерна, анатомического строения и химического состава. Чем больше в зерне содержится крахмала и белка, тем выше критическая влажность. Она низкая у семян масличных культур, т. к. вода в них удерживается только нелипидной частью семянки (табл. 8).
Таблица 8
Критическая влажность зерна и семян злаковых, бобовых и масличных культур
Зерно и семена масличных культур, содержащие свободную воду в значении ниже критического, считаются сухими и пригодны для хранения.