Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник по английскому КУРС2.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
24.2 Mб
Скачать

24.5 Translate the sentences into English paying attention to relevant terminology

1. «Нет ничего более поучительного (instructive) для молодых инженеров, чем отчеты об авариях больших со­оружений и о средствах (ways), использованных для ис­правления (repair) повреждений. Добросовестное изло­жение (honest description) этих происшествий и способов, которыми исправляли их последствия (effect), имеет бóльшую ценность (importance), чем описание самых успешных работ», сказал английский инженер Роберт Стефенсон, строивший железнодорожные мосты, среди которых 400-метровый мост через Менейский пролив.

2. Потеря устойчивости (loss of stability) металлической конструкции, либо её отдельных элементов является одной из основных причин крушений мостов. Английский инженер и учёный Джеймс Э.Гордон сказал: «Нужно было пройти долгий путь, полный сомне­ний (uncertainty) и катастроф (вроде случая с мостом через реку Тэй), чтобы инженеры убедились [receive evidence (that)] в пользе расчетов». Мостовые аварии и катастрофы привели к развитию научной и инженерной мысли (conviction).

3. Однопутный (single-track) железнодорожный мост длиной 3622,5 м через реку Тэй в Великобритании обрушился в 1879 году. Ветер, дувший со скоростью (velocity) 140 км/ч, обрушил судоходные пролеты (over shipping channel) в воду вместе с проходившим по мосту поездом. Конструкция моста не выдержала давления ветра, так как 20-кратный запас прочности (20-multiple safety factor) предусмотрел (make provision of) вертикальную нагрузку, но не включал боковое давление ветра. Катастрофа Тэйского моста положила начало совершенствованию (development) расчетов мостов на вет­ровые нагрузки.

4. Металлический железнодорожный мост через реку Кевду в России обрушился в 1875 году. Балочный мост с открытым верхним поясом длиной 33,5 м не имел верхних поперечных связей (cross bracing). Крушение произошло при проходе по мосту рабочего (trial) поезда. Этот трагический эксперимент, послужил причиной возникновения теории устойчивости (stability theory).

5. Консольный мост в Канадском городе Квебек через реку Св. Лаврентия обрушивался дважды. Первая катастрофа произошла в 1907 г. (fig. 24. 3a). Металлическая конструкция массой в 9000 тонн упала в реку, унеся жизни 75 строителей. Причиной крушения оказались элементы нижнего пояса консольной фермы, которые выгнулись (hog) и потеряли устойчивость вследствие бокового выпучивания (lateral buckling). Ошибка (blunder) в расчете собственного веса моста составила 25% и мост проектировали заново (redesign).

6. Второе крушение Квебекского моста, длина которого составляла 988 м, произошло в 1916 году. При монтаже центрального подвесного пролёта длиной 549 м, ферма соскользнула с концевой опоры (slide off the end support), оборвала (break) подъёмные устройства (lifting device) и рухнула (crash down) вместе с монтажниками, 13 из которых погибли. Последствия катастрофы удалось ликвидировать и в 1919 году мост сдали в эксплуатацию.

a – The first collapse of the Quebec Bridge in 1907

b - The Tacoma Bridge collapse under aerodynamic force

Figure 24.3 Bridge collapses caused by low structural stability

7. Причиной крушения трёхпролётного висячего моста Такома-Нэрроуз в США в 1940 году стали динамические крутильные колебания (torsional vibrations), вызванные поперечным ветром (cross wind) скоростью 19 м/с (fig.24.4b). В расчёте моста не учли действие аэродинамической нагрузки. При ветре полотно моста раскачивалось, и его прозвали (nickname) «Галопирующая Герти» (Galloping Gertie). В течение часа были оборваны подвески, и образовался сильный прогиб (deflection) балок жесткости. Мост сильно изгибался, и части среднего пролета отрывались и падали. Эту аварию назвали «the Pearl Harbor of engineering». Восстановленный мост был открыт в 1950 г. Разрушение моста продвинуло исследования в области аэродинамики и аэроупругости (aeroelasticity) конструкций и изменило подходы к проектированию большепролетных мостов.

8. 15 мая 1971 года произошла трагедия на реке Самаре в г. Куйбышев. В пролёт автомобильного моста врезался сухогруз (bulk carrier). При столкновении рубка (deckhouse) судна зацепила (catch on) мостовой пролет, и железобетонная конструкция сдвинулась вбок (sideward), потеряла точку опоры (supporting point) и рухнула на злополучное (ill-fated) судно. Проектировщики (planner) не предусмотрели креплений (securing in place) мостовой плиты в боковом направлении. Вследствие этого, сравнительно небольшой удар (impact) столкнул (push) тысячетонный пролёт с места, и он рухнул вниз (fig.24.4a).

a - Bridge collapse caused by collision

b - Collapce in the Sasago Tunnel in Japan

Figure 24.4 Collapses of Railway and Motorway Engineering Structures

9. 18 августа 2012 года произошло обрушение подводного тоннеля (immersed tunnel) в Японии. Тоннель длиной 140 м и диаметром 11 м находится на глубине 30 м и соединяет нефтеперерабатывающее предприятие (refinery) с портом Мидзусима. Внезапно прорвало (break through) трубу и вода хлынула (gush out in a sudden and forceful stream) в тоннель. Создалась реальная угроза затопления района города Курасики. На место аварии немедленно прибыли сотрудники поисковых служб (search crew) и спасатели. Только одному рабочему удалось выбраться (struggle out of) из затопленного тоннеля.

10. В декабре 2012 года произошло крушение в самом длинном автомобильном тоннеле Сосаго в Японии, где погибло 9 человек. Осмотр повреждений установил, что причиной катастрофы стала 100-метровая балка, которая рухнула, вызвав обрушение 150 бетонных плит в центральной части тоннеля. Тоннель был в аварийном состоянии, так как балки крепились (secure) к потолку болтами, которые ни разу не менялись со времени открытия тоннеля в 1977 году. Во время обвала в тоннеле находились пассажирские и грузовые транспортные средства. Возник пожар, который мешал (prevent) спасателям разбирать (remove) завал (debris).

11. Сооружение самого длинного в России Северомуйского железнодорожного тоннеля (15 км), который был сдан в эксплуатацию в 2003 году, продолжалось 26 лет. Строительство сопровождалось авариями, которые останавливали (stop) работы на долгое время. Первая тяжелая авария (grave damage) случилась в 1979 году. Проходчики столкнулись с высоконапорным (high-pressure) плывуном, взломавшим гранитную перемычку (barrier). Вода с песком неслась по тоннелю под давлением 14 атмосфер. На ликвидацию последствий ушло более двух лет.

12. Следующий обвал обводнённой (water-bearing) породы заблокировал участок тоннеля в 1999 году. Проходка Северомуйского тоннеля признана самой сложной в мировом опыте тоннелестроения из-за инженерно-геологических условий. Участки с тектоническими разломами (fault) по всей длине трассы тоннеля (tunnel path) сильно отличались между собой обводнённостью, протяженностью и строением. Они нуждались в разных способах проходки. Все приглашенные иностранные специалисты отказались от личного участия, предоставив (supply) только технику.