
- •Росжелдор
- •Unit 1 railway and motorway engineering structures
- •First, scan the text and then read it more carefully
- •1.2 Give the equivalents in Russian of the following terms
- •1.3 What are the English equivalents of the following Russian terms?
- •1.4 Complete and translate the following sentences using the word list
- •1.5 Translate into English the following sentences
- •1.6 Match the English and Russian terms
- •1.7 Answer the following questions
- •1.8 Render the text according to your plan and give the names of most famous railway and motorway engineering structures in Russia and abroad Unit 2 bridge crossing and its components
- •2.1 Read the following text and make a plan for it
- •Superstructure (пролётное строение); 2 – Pier (опора); 3 – Abutment (устой);
- •2.2 Give the Russian equivalents of the following terms
- •2.3 Give the English equivalents of the following terms
- •2.4 Complete and translate the following sentences
- •2.5 Translate into English the following sentences
- •2.6 Match the words in column a with column b
- •2.7 Read the questions and see if you can answer them
- •2.8 Render the text according to your plan Unit 3 bridge classification
- •3.1 Read the text and make up a bridgework glossary in Russian
- •3.2 Find the Russian equivalents for the following English terms
- •3.3 Find the English equivalents to the following Russian terms
- •3.4 Complete and translate the following sentences
- •3.5 Translate into English the following sentences
- •3.6 Answer the questions
- •3.7 Describe different bridge structures according to their structural design using the terminology below
- •Unit 4 bridges of moscow
- •4.1 Read the text to have a basic notion of bridges in the capital of Russia.
- •4.2 Find the Russian equivalents for the following English terms
- •4.3 Find the English equivalents to the following Russian terms:
- •4.4 Match English and Russian bridge terminology:
- •4.5 Complete and translate the sentences using the following terms
- •4.6 Translate into English the following sentences
- •4.7 Answer the following questions
- •4.8 Render the text according to your plan Unit 5 bridges of st petersburg
- •5.1 Have you ever been to St Petersburg? If so, try to complement the text with your own information. If not, try to enhance your professional range of knowledge
- •5.10 Translate the text into English
- •Unit 6 timber and masonry bridges
- •6.1 Read the text about different building materials. Compare them and say which one is more suitable for permanent or temporary structures
- •6.6 Complete and translate the following sentences
- •6.7 Translate the following sentences into English
- •6.8 Give a reason to support what you say answering to these questions
- •6.9 Express your ideas about the building qualities of stone and wood Unit 7 reinforced concrete bridges
- •7.1 Read the text and learn the terminology using the list of words
- •7.2 Find the Russian equivalents for the following English terms
- •7.3 Find the English equivalents to the following Russian terms
- •7.4 Make up the questions to the following answers
- •7.5 Complete and translate the following sentences using the Word list
- •7.6 Translate the following sentences into English
- •7.7 Discuss the following questions
- •Unit 8 metal bridges
- •8.1 Think of different building materials and answer the following questions
- •8.2 Read the text and check your answers. How much did you guess correctly?
- •8.3 Find the Russian equivalents for the following English terms
- •8.4 What are the English equivalents for the following Russian terms?
- •8.5 Say whether these statements are true
- •8.6 Match the Russian and English terms
- •8.7 Complete and translate the following sentences
- •8.8 Translate the following sentences into English
- •Unit 9 bridges of great britain
- •9.1 Read the text and improve your knowledge of foreign experiences in bridge building
- •9.2 Tell the story of the Old London Bridge using the following terms
- •9.3 Read the text about famous London bridges and tell about them
- •9.4 Find the Russian equivalents for the following English terms
- •9.5 Read the text about the most astonishing British bridges and tell about them
- •9.6 Find the Russian equivalents for the following English terms
- •9.7 Complete and translate the following text
- •9.8 Complete the following sentences using your own ideas
- •9.9 Answer the following questions
- •9.10 Translate the text into English
- •10.1 After reading the text, prove the idea that suspension structures are the safest among bridgeworks
- •10.2 Find the Russian equivalents for the following English terms
- •10.3 Make up examples with the terms describing a suspension structure
- •10.4 Choose which statements are true
- •10.5 Complete and translate the following sentences
- •10.6 Translate the following sentences into English
- •10.7 Answer the following questions
- •10.8 Describe the Golden Gate Bridge using the following information
- •10.9 Consult this list of bridge terminology while doing the exercises
- •Unit 11 bridges of novosibirsk
- •11.1 Having read the text, complete the information with details you may notice in the pictures
- •11.2 Find the Russian equivalents for the following English terms
- •11.3 Find the Russian equivalents for the following English terms
- •11.4 Match the English and Russian terms
- •11.5 Translate the following sentences into English
- •11.6 Answer the following questions
- •11.7 What bridge across the Ob River do you prefer and why? Express your opinion using the following word combinations
- •11.8 Describe your “dream bridge”. Do you have any ideas that will surprise your classmates? Think of a place for “your” bridge. Unit 12 bridge or tunnel?
- •12.1 Read the text and give your reasons for making a choice between a bridge and a tunnel
- •12.2 Find the Russian equivalents for the following English terms
- •12.3 Find the Russian equivalents for the following English terms
- •12.4 Complete and translate the following sentences using the word list
- •12.5 Translate the following sentences into English
- •12.6 Think over the problems and give your reasons for the right solution
- •12.7 Read this interview and make up your own dialogue using the following expressions
- •Unit 13 construction of supports and foundations
- •13.1 Read the text to get a clear idea of building materials and construction technologies for piers and foundations. Go down the word list and take note of professional terminology.
- •13.2 Find the Russian equivalents for the following English terms
- •13.3 Find the Russian equivalents for the following English terms
- •13.4 Translate the following information into Russian, consulting the terminology list and using the word combinations given below
- •13.5 Translate the following information into English using the terminology list
- •13.6 Give your reasons to support the answers to these questions
- •Unit 14 superstructure construction
- •14.1 Read the text and pay attention to the differences in the various techniques of superstructure construction
- •14.2 Find the Russian equivalents for the following English terms
- •14.3 Find the Russian equivalents for the following English terms
- •14.4 Complete and translate the following sentences using the terminology from previous text and the word list (14.6)
- •14.5 Translate the following sentences into English
- •14.6 Find the relevant information in the texts to answer these questions
- •14.7 Describe superstructure construction methods using the following word combinations
- •Unit 15 construction of suspension and cable-stayed bridges
- •15.1 Read the text and pay attention to the peculiarities of suspension superstructure construction
- •15.2 Find the Russian equivalents for the following English terms
- •15.3 Find the Russian equivalents for the following English terms
- •15.4 Complete and translate the sentences using the following words
- •15.5 Translate the following sentences into English
- •15.6 Find the relevant information in the texts to answer these questions
- •15.7 Describe superstructure construction methods. Remember the following word combinations
- •Unit 16 bridge maintenance
- •16.1 Read the text and make a list of the main ideas you should remember as a future bridge builder
- •16.2 Find the Russian equivalents for the following English terms:
- •16.3 Find the English equivalents for the following Russian terms
- •16.4 Match the equivalents
- •16.5 Complete the following sentences
- •16.6 Read the text and find the equivalents for the following terms
- •16.7 Translate the following sentences into English using terminology from this unit
- •16.8 Find the answers to these questions in the text
- •16.9 Role-play. “On-site review and visual inspection of the bridge components”
- •Unit 17 tunnel classification
- •17.1 Read the text and make a list of tunneling terminology
- •17.2 Find the Russian equivalents for the following English terms
- •17.3 Find the English equivalents for the following Russian terms
- •17.4 Complete and translate the following sentences using the Word list.
- •8 Side Wall Drift (боковая штросса); 9 – Lining (обделка тоннеля);
- •– Tunnel Foot (подошва тоннеля)
- •17.5 Translate the following sentences into English using terminology from the texts. Tell a partner what you found most interesting
- •17.5 Answer the questions using the information from the text and your own ideas
- •17.6 Describe any tunnel using the information model from the following.
- •Unit 18 construction methods of tunnels
- •18.1 Read the text and define recent trends in unneling
- •18.2 Find the Russian equivalents for the following English terms
- •18.3 Find the English equivalents for the following Russian terms
- •18.4 Complete the following sentences using the word list and translate them
- •18.5 Translate the following sentences into English using terminology from previous texts
- •18.6 Make up the answers to these questions. Use the Word list
- •18.7 Read the dialogue below and retell it with a partner
- •18.8 Disagree with each statement
- •Unit 19 shield tunnelling
- •19.1 Read the text to have an idea of state-of-the-art tbm’s
- •Figure 19. 7 Technological Process by the Slurry Shield Complex
- •19.2 Find the Russian equivalents for the following English terms
- •19.3 Find the English equivalents for each of the Russian terms
- •19.4 Complete and translate the following sentences using the list of word combinations below
- •19.5 Complete the following sentences using your own ideas and the Word list below.
- •19.6 Translate the sentences into English
- •19.7 Answer the following questions
- •Unit 20 general idea of the metro
- •20.1 Read the text and find out peculiarities in the underground railway systems of different countries
- •20.2 Find the Russian equivalents for the following English terms
- •20.3 Find the English equivalents for each of the Russian terms from the text
- •20.4 Complete and translate the sentences using the following words and word combinations
- •20.6 Think of the answers and give a reason to support what you say
- •20.7 Complete the following sentences in a suitable way
- •20.8 Discuss the ideas expressed by these two engineers suggesting their solution of public transport development in modern cities
- •Unit 21 the novosibirsk metro
- •21.1 Read the text and complement it with more details from the history and present-day operation of the Novosibirsk Metro
- •21.2 Find the Russian equivalents for the following English terms
- •21.3 Find the English equivalents for each of the Russian terms
- •21.4 Complete the sentences using the following words and render this text in English
- •21.5 Complete and translate the following sentences
- •21.6 Discuss the following questions
- •21.7 Read the dialogue and compose your own conversation with a partner. Use the words and expressions from the model
- •21.8 Try to guess the meaning of the following word combination
- •21.10 Ask each other questions to test your knowledge of the unit Unit 22 structures in the underground
- •22.1 Read the text consulting the Word list for better understanding
- •22.2 Find the Russian equivalents for the following English terms
- •22.3 Find the English equivalents for each of the Russian terms from the text
- •22.4 Translate the sentences using the necessary English equivalents.
- •22.5 Translate the sentences into English paing attention to relevant terminology
- •22.6 Choose which statement is true
- •22.7 Discuss the following questions
- •Unit 23 tunnel maintenance
- •23.1 Having read the text try to prove the idea that tunnel maintenance is much more expensive compared to bridge maintenance. Give your reasons
- •23.2 Find the Russian equivalents for the following English terms
- •23.3 Find the English equivalents for each of the Russian terms
- •23.4 Complete the sentences using the following words
- •23.5 Complete and translate the following sentences
- •23.6 Answer the questions
- •Unit 24 сollapse of bridges and tunnels
- •24.1 Read the text, try to guess the meaning of the words you do not know, and then analyze how many meanings you can guess correctly or nearly correctly
- •24.2 Find the Russian equivalents for the following English terms
- •24.3 Find the English equivalents for each of the Russian terms
- •24.4 Complete the sentences using the following words and translate them into Russian
- •24.5 Translate the sentences into English paying attention to relevant terminology
- •24.6 Working in pairs, practice the questions below and support your opinion by using vivid examples. Make up your own questions
- •Unit 25
- •25.1 Read the text and try to complement its content with detailed information and interesting facts
- •25.2 Find the Russian equivalents for the following English terms and word combinations
- •25.3 Find the English equivalents for each of the Russian terms from the text
- •25.4 Complete the sentences using the following words and translate them into Russian
- •25.5 Complete and translate the following sentences
- •25.6 Answer the following questions
21.6 Discuss the following questions
What are the challengers of metro construction in Siberia?
What date is the birthday of the Novosibirsk Metro?
When and where did the metro builders drive the first pile?
When did the first breakthrough take place?
What method was suitable to convey the muck from the tunnel face?
When was the first trial trip?
Is the Novosibirsk Metro still under construction?
21.7 Read the dialogue and compose your own conversation with a partner. Use the words and expressions from the model
A: I always go by metro when I can. It’s much less confusing than buses for a stranger.
B: But you waste a lot of time using the metro for short distances.
A: I would probably lose a lot more finding out which bus to take, and where to get off, and very likely get to the wrong place, in the end. If I use the metro, I can be sure of getting to the place I want.
B: But some of the stations are pretty far apart.
A: Yes, but you do know where you are. Even if I have to take a bus in the end, I get as close as I can by metro.
B: Yes, I suppose there’s something in that. I do use the metro quite a bit, in fact. But I use buses as much as possible.
A: Oh, yes, they have their points.
21.8 Try to guess the meaning of the following word combination
The passenger transport operator; to gain competitive advantage over the private car; “station to station” operation; to drive between stations in total safety; a breakdown situation; public transport users; passenger flow within stations; end-to-end journey time; the first departure; a low-floor car; the ticket collection turnstiles
21.10 Ask each other questions to test your knowledge of the unit Unit 22 structures in the underground
22.1 Read the text consulting the Word list for better understanding
The metro is one of the most efficient mode of public transport. It is a very complicated system including track ways between stations. The metro track differs from conventional railway track.
|
|
a - General Arrangement of the Metro Interstation Tunnel (Общий вид перегонного тоннеля метрополитена) |
b - Crossover Chambers with scissors crossings (Камеры съездов)
|
Figure 22.1 General Arrangements of Metro Tunnels
The rails in the metro rest on concrete sleepers to keep the air free from dust. Were the track embedded in slag, gravel, sand, earth or even broken stone, called the ballast, the trains would be followed by dust clouds. The metro sleepers are shorter (0.9 m.) than those for the heavy rail track (2.7 m), and are separated by a drainage gutter (fig. 22.1a; 22.2). The contact rail, laid alongside the track throughout the line, carries a high voltage of 825 volts. It is attached to the brackets and transmits direct current to the train electromotor through the current collector (fig. 22.1; 22.2).
Figure 22.2 Layout of the Underground Track (схема пути метрополитена)
1 - Tunnel Lining (обделка); 2 – Concrete Base (бетонное основание);
3 – Semisleeper (полушпалок); 4 – Rail (рельс);
5 – Drainage Gutter (водоотводной лоток); 6 – Bracket (кронштейн);
7 – Contact Rail (контактный рельс);
8 - Train Current Collector – (токосъёмщик поезда)
The main part of any underground railway system is an interstation tunnel (fig. 22.1a). It may be a one-way tunnel with single track or a tunnel with double tracks. The New York Subway has four-track sections including a regular express service. The total length of the New York Subway is 337 km with 468 stations that are operated around the clock and used by 21 one-way lines and three shuttle services. Three-track sections are used for express service during rush hours.
The lining in the tunnels has a circular shape (fig.22.1). As a rule, it is made of reinforced concrete segments or cast iron liners in separate units. The trains divert from one track to another using crossovers (fig. 22.1b; 22.3).
Figure 22.3 Diagram of Crossovers and Stub-end Tracks (схема съездов и тупиков)
1 – Crossover (съезд); 2 – Stub-end Track (тупик); 3 – Train-set (поезд)
The metro carries yearly millions of passengers, and the stations are collection points for them. A metro station is usually a surface or an elevated railway station with ticket offices and automatic fare collection gates (AFC) or turnstiles (fig. 22.4c). The logo of each metro company marks the entrance of the station at street level. Station planning must provide a safe environment for passengers and meet the functional and aesthetic requirements. Attractively designed metro stations represent a continuation of the aboveground architecture. They are fully air-conditioned with required temperature and humidity though the stations are deep below street level. Usually passengers do not notice whether they are moving above or below ground because the structural layout itself creates the atmosphere of “a city within a city”, and the underpasses are densely packed with retail outlets.
|
|
a - entrance/exit |
b – concourse (вестибюль) |
|
|
c - entrance turnstile (входные турникеты) |
d – three-band escalator |
Figure 22.4 A typical underground station
A typical underground station may have up to several ground level entrances and exits. They should allow for straight and short passageways that connect entrances to the fare paid zone, which is behind the line of turnstiles. Station access points must be equipped with one or more wide gate for wheelchair users and passengers with baby carriages. The width of the underpasses should range between 2 and 6 m, the height cannot be less than 2.5 m. The routes must be unobstructed and information including route maps is clearly visible throughout the station. The signs must display messages in English and in the native language.
Sanitary engineering, air ventilation chambers, lifts and ancillary rooms further facilitate the metro station. Disabled and passengers with heavy luggage and trolleys can use lifts.
The number as well as sizing of the platforms, escalators and subways, which are station elements, is dependent on the number of people using the station. To determine the optimum capacity of an underground station it is necessary to consider not only the number of passengers passing by continuously, but also the maximum number of passengers the station can deal with effectively. The regular number index of any station is measured by the number of passengers for a station and is equal to 20-30% of total train capacity. If stations are located near terminals, theatres, etc. the quantity index must be equal to 50%. The stations located next to large sports stadiums or concert arenas have the quantity index that is equal to 100% of overall train capacity because occasional events generate a powerful passenger flow over a relatively short period.
It has become common to provide escalators for upward and downward movement, and to allow passengers to change levels within the station. Escalators connect the underground platforms with concourses, staff offices and E&M plant rooms with electrical and mechanical equipment. An escalator system involves an inclined tunnel for three moving stairs, a power-driven station to move the stairs, fig. 22.5) and a tensioning station for a tensioning device.
Figure 22.5 Escalator Facility (эскалаторный комплекс)
1 – Tensioning Station (натяжная камера); 2 – Escalator Tunnel (эскалаторный тоннель);
3 – Power-driven Station (приводная станция)
The diameter of the inclined tunnel is 8.1 m. Sometimes there are normal stairs between the two moving lanes, used in case the escalator breaks down. Stairs and escalator widths must be adequate for emergency evacuation. Today’s escalators provide ever increasing levels of reliability, comfort, roughened handrails and non-slip treads (fig.22.4d). The driving machinery uses the planetary gear arrangement with lower energy consumption because one direct drive machine powers both steps and handrails. The escalator safety enhances if the movement of step band and handrail is fully synchronized.
The performance of modern escalator systems is due to reliable technology and “intelligent” electronic monitoring and control. If malfunctions occur, automatic control units help to find them quickly. Stop switches provide safe access to all escalator machine spaces to enable the authorized personnel to keep the equipment in service. As escalators may go out of service, each metro system has its own program of ongoing maintenance and continuous monitoring.
Platforms are very important parts of the station as passengers gather, enter the trains and change routes (fig. 22.6 a,b; 22.7) there.
Figure 22.6 Diagram of the Underground Stations (схема станций метро)
1 – Track (путь); 2 – Platform (платформа)
Two factors regulate the overall configuration of stations. The first is the train length that determines a clear platform length. The second factor is the choice between side or island platforms (fig. 22.6; 22.7).
|
|
a - Single Span Station (односводчатая станция) |
b - Deep pillared-trispan Station |
|
|
c – Station with simple flat-slab ceiling |
d- Station of side type |
|
|
e - Single Span Station of island type |
d - Station of island type with simple flat-slab ceiling |
Figure 22.7 Types of Metro Stations
When double-bored tunnels are proposed, island platforms are preferred. A single row of columns in the centre of the platform or on both platform sides is a normal structural solution. A column-free platform also offers advantages, including an enhanced feeling of spaciousness. Architecture and interior design should satisfy passenger needs. Seating should provide passengers with comfortable waiting for trains but should not form any obstruction. Floor surfaces should be firm, easy to clean and made out of non-slip materials. Artificial lightning enhances the interior of the station. Platform edges must have strips of high contrasting colour (hazard tape) to warn passengers and prevent access to the tracks.
Figure 22.8 Diagram of Structures of the Underground Stations
(схема конструкций станций метрополитена)
a – Shallow-laid Station (станция мелкого заложения);
b – Deep-laid Station (станция глубокого заложения);
1 – Track (путь); 2 – Platform (платформа); 3 – Pillar (колонна, стойка);
4 – Ceiling Slab (плита перекрытия); 5 – Tunnel Lining (обделка)
Some platforms are equipped with automatic platform screen doors, which allow a full load of passengers on and off the cars within 90 seconds. These doors allow people to enter the cars only when the train stops in accurate alignment with the barrier doors. Platform screen doors differ from platform edge doors (PEDs). The former are total and full height barriers between the station floor and ceiling, the latter do not reach the ceiling. Besides these two, there are automatic platform gates called half-height platform screen doors. They are chest-height sliding doors at the edge of passenger platforms creating a safe waiting environment and preventing people from accidental falling or deliberate jumping off the platform waiting area onto tracks where they can be electrocuted or run over. Many stations on the Jubilee Line and the Canary Wharf Station in London, are equipped with glass protective barriers, and contain bright coloured banding to make them more visible.
Pillared-trispan structures are constructed for deep stations (fig. 22.7b). The central span is used for a passenger platform and the side spans are used for track ways. Span ceiling stations have pillars, which serve as the principle-bearing element. The result is a perfect harmony between attractiveness for the eye and technology. As a rule, the floors of shallow-laying stations are made of flat panels (fig. 22.7d). All station platforms, escalators, corridors and tunnels are under closed circuit television surveillance.
The Word list
1. Ancillary room |
вспомогательное помещение |
2. Automatic platform screen doors |
автоматические сплошные двери-загрождения |
3 Direct drive machine |
привод непосредственно от электродвигателя |
4. Driving machinery |
приводной механизм |
5. E&M plant rooms |
энерго- и механический блок |
6. Planetary gear arrangement |
планетарный зубчатый механизм |
7. Power-driven station |
приводная станция |
8. Running tunnel, interstation tunnel |
перегонный тоннель |
9. Safe access |
свободный безопасный доступ |
10. Sanitary engineering |
сантехническое оборудование |
11. Staff office |
служебное помещение |
12. Stop switch |
выключатель |
13. Structural system |
конструктивная система |
14. Twin-bored tunnel |
параллельный тоннель |
Exercises