
- •Росжелдор
- •Unit 1 railway and motorway engineering structures
- •First, scan the text and then read it more carefully
- •1.2 Give the equivalents in Russian of the following terms
- •1.3 What are the English equivalents of the following Russian terms?
- •1.4 Complete and translate the following sentences using the word list
- •1.5 Translate into English the following sentences
- •1.6 Match the English and Russian terms
- •1.7 Answer the following questions
- •1.8 Render the text according to your plan and give the names of most famous railway and motorway engineering structures in Russia and abroad Unit 2 bridge crossing and its components
- •2.1 Read the following text and make a plan for it
- •Superstructure (пролётное строение); 2 – Pier (опора); 3 – Abutment (устой);
- •2.2 Give the Russian equivalents of the following terms
- •2.3 Give the English equivalents of the following terms
- •2.4 Complete and translate the following sentences
- •2.5 Translate into English the following sentences
- •2.6 Match the words in column a with column b
- •2.7 Read the questions and see if you can answer them
- •2.8 Render the text according to your plan Unit 3 bridge classification
- •3.1 Read the text and make up a bridgework glossary in Russian
- •3.2 Find the Russian equivalents for the following English terms
- •3.3 Find the English equivalents to the following Russian terms
- •3.4 Complete and translate the following sentences
- •3.5 Translate into English the following sentences
- •3.6 Answer the questions
- •3.7 Describe different bridge structures according to their structural design using the terminology below
- •Unit 4 bridges of moscow
- •4.1 Read the text to have a basic notion of bridges in the capital of Russia.
- •4.2 Find the Russian equivalents for the following English terms
- •4.3 Find the English equivalents to the following Russian terms:
- •4.4 Match English and Russian bridge terminology:
- •4.5 Complete and translate the sentences using the following terms
- •4.6 Translate into English the following sentences
- •4.7 Answer the following questions
- •4.8 Render the text according to your plan Unit 5 bridges of st petersburg
- •5.1 Have you ever been to St Petersburg? If so, try to complement the text with your own information. If not, try to enhance your professional range of knowledge
- •5.10 Translate the text into English
- •Unit 6 timber and masonry bridges
- •6.1 Read the text about different building materials. Compare them and say which one is more suitable for permanent or temporary structures
- •6.6 Complete and translate the following sentences
- •6.7 Translate the following sentences into English
- •6.8 Give a reason to support what you say answering to these questions
- •6.9 Express your ideas about the building qualities of stone and wood Unit 7 reinforced concrete bridges
- •7.1 Read the text and learn the terminology using the list of words
- •7.2 Find the Russian equivalents for the following English terms
- •7.3 Find the English equivalents to the following Russian terms
- •7.4 Make up the questions to the following answers
- •7.5 Complete and translate the following sentences using the Word list
- •7.6 Translate the following sentences into English
- •7.7 Discuss the following questions
- •Unit 8 metal bridges
- •8.1 Think of different building materials and answer the following questions
- •8.2 Read the text and check your answers. How much did you guess correctly?
- •8.3 Find the Russian equivalents for the following English terms
- •8.4 What are the English equivalents for the following Russian terms?
- •8.5 Say whether these statements are true
- •8.6 Match the Russian and English terms
- •8.7 Complete and translate the following sentences
- •8.8 Translate the following sentences into English
- •Unit 9 bridges of great britain
- •9.1 Read the text and improve your knowledge of foreign experiences in bridge building
- •9.2 Tell the story of the Old London Bridge using the following terms
- •9.3 Read the text about famous London bridges and tell about them
- •9.4 Find the Russian equivalents for the following English terms
- •9.5 Read the text about the most astonishing British bridges and tell about them
- •9.6 Find the Russian equivalents for the following English terms
- •9.7 Complete and translate the following text
- •9.8 Complete the following sentences using your own ideas
- •9.9 Answer the following questions
- •9.10 Translate the text into English
- •10.1 After reading the text, prove the idea that suspension structures are the safest among bridgeworks
- •10.2 Find the Russian equivalents for the following English terms
- •10.3 Make up examples with the terms describing a suspension structure
- •10.4 Choose which statements are true
- •10.5 Complete and translate the following sentences
- •10.6 Translate the following sentences into English
- •10.7 Answer the following questions
- •10.8 Describe the Golden Gate Bridge using the following information
- •10.9 Consult this list of bridge terminology while doing the exercises
- •Unit 11 bridges of novosibirsk
- •11.1 Having read the text, complete the information with details you may notice in the pictures
- •11.2 Find the Russian equivalents for the following English terms
- •11.3 Find the Russian equivalents for the following English terms
- •11.4 Match the English and Russian terms
- •11.5 Translate the following sentences into English
- •11.6 Answer the following questions
- •11.7 What bridge across the Ob River do you prefer and why? Express your opinion using the following word combinations
- •11.8 Describe your “dream bridge”. Do you have any ideas that will surprise your classmates? Think of a place for “your” bridge. Unit 12 bridge or tunnel?
- •12.1 Read the text and give your reasons for making a choice between a bridge and a tunnel
- •12.2 Find the Russian equivalents for the following English terms
- •12.3 Find the Russian equivalents for the following English terms
- •12.4 Complete and translate the following sentences using the word list
- •12.5 Translate the following sentences into English
- •12.6 Think over the problems and give your reasons for the right solution
- •12.7 Read this interview and make up your own dialogue using the following expressions
- •Unit 13 construction of supports and foundations
- •13.1 Read the text to get a clear idea of building materials and construction technologies for piers and foundations. Go down the word list and take note of professional terminology.
- •13.2 Find the Russian equivalents for the following English terms
- •13.3 Find the Russian equivalents for the following English terms
- •13.4 Translate the following information into Russian, consulting the terminology list and using the word combinations given below
- •13.5 Translate the following information into English using the terminology list
- •13.6 Give your reasons to support the answers to these questions
- •Unit 14 superstructure construction
- •14.1 Read the text and pay attention to the differences in the various techniques of superstructure construction
- •14.2 Find the Russian equivalents for the following English terms
- •14.3 Find the Russian equivalents for the following English terms
- •14.4 Complete and translate the following sentences using the terminology from previous text and the word list (14.6)
- •14.5 Translate the following sentences into English
- •14.6 Find the relevant information in the texts to answer these questions
- •14.7 Describe superstructure construction methods using the following word combinations
- •Unit 15 construction of suspension and cable-stayed bridges
- •15.1 Read the text and pay attention to the peculiarities of suspension superstructure construction
- •15.2 Find the Russian equivalents for the following English terms
- •15.3 Find the Russian equivalents for the following English terms
- •15.4 Complete and translate the sentences using the following words
- •15.5 Translate the following sentences into English
- •15.6 Find the relevant information in the texts to answer these questions
- •15.7 Describe superstructure construction methods. Remember the following word combinations
- •Unit 16 bridge maintenance
- •16.1 Read the text and make a list of the main ideas you should remember as a future bridge builder
- •16.2 Find the Russian equivalents for the following English terms:
- •16.3 Find the English equivalents for the following Russian terms
- •16.4 Match the equivalents
- •16.5 Complete the following sentences
- •16.6 Read the text and find the equivalents for the following terms
- •16.7 Translate the following sentences into English using terminology from this unit
- •16.8 Find the answers to these questions in the text
- •16.9 Role-play. “On-site review and visual inspection of the bridge components”
- •Unit 17 tunnel classification
- •17.1 Read the text and make a list of tunneling terminology
- •17.2 Find the Russian equivalents for the following English terms
- •17.3 Find the English equivalents for the following Russian terms
- •17.4 Complete and translate the following sentences using the Word list.
- •8 Side Wall Drift (боковая штросса); 9 – Lining (обделка тоннеля);
- •– Tunnel Foot (подошва тоннеля)
- •17.5 Translate the following sentences into English using terminology from the texts. Tell a partner what you found most interesting
- •17.5 Answer the questions using the information from the text and your own ideas
- •17.6 Describe any tunnel using the information model from the following.
- •Unit 18 construction methods of tunnels
- •18.1 Read the text and define recent trends in unneling
- •18.2 Find the Russian equivalents for the following English terms
- •18.3 Find the English equivalents for the following Russian terms
- •18.4 Complete the following sentences using the word list and translate them
- •18.5 Translate the following sentences into English using terminology from previous texts
- •18.6 Make up the answers to these questions. Use the Word list
- •18.7 Read the dialogue below and retell it with a partner
- •18.8 Disagree with each statement
- •Unit 19 shield tunnelling
- •19.1 Read the text to have an idea of state-of-the-art tbm’s
- •Figure 19. 7 Technological Process by the Slurry Shield Complex
- •19.2 Find the Russian equivalents for the following English terms
- •19.3 Find the English equivalents for each of the Russian terms
- •19.4 Complete and translate the following sentences using the list of word combinations below
- •19.5 Complete the following sentences using your own ideas and the Word list below.
- •19.6 Translate the sentences into English
- •19.7 Answer the following questions
- •Unit 20 general idea of the metro
- •20.1 Read the text and find out peculiarities in the underground railway systems of different countries
- •20.2 Find the Russian equivalents for the following English terms
- •20.3 Find the English equivalents for each of the Russian terms from the text
- •20.4 Complete and translate the sentences using the following words and word combinations
- •20.6 Think of the answers and give a reason to support what you say
- •20.7 Complete the following sentences in a suitable way
- •20.8 Discuss the ideas expressed by these two engineers suggesting their solution of public transport development in modern cities
- •Unit 21 the novosibirsk metro
- •21.1 Read the text and complement it with more details from the history and present-day operation of the Novosibirsk Metro
- •21.2 Find the Russian equivalents for the following English terms
- •21.3 Find the English equivalents for each of the Russian terms
- •21.4 Complete the sentences using the following words and render this text in English
- •21.5 Complete and translate the following sentences
- •21.6 Discuss the following questions
- •21.7 Read the dialogue and compose your own conversation with a partner. Use the words and expressions from the model
- •21.8 Try to guess the meaning of the following word combination
- •21.10 Ask each other questions to test your knowledge of the unit Unit 22 structures in the underground
- •22.1 Read the text consulting the Word list for better understanding
- •22.2 Find the Russian equivalents for the following English terms
- •22.3 Find the English equivalents for each of the Russian terms from the text
- •22.4 Translate the sentences using the necessary English equivalents.
- •22.5 Translate the sentences into English paing attention to relevant terminology
- •22.6 Choose which statement is true
- •22.7 Discuss the following questions
- •Unit 23 tunnel maintenance
- •23.1 Having read the text try to prove the idea that tunnel maintenance is much more expensive compared to bridge maintenance. Give your reasons
- •23.2 Find the Russian equivalents for the following English terms
- •23.3 Find the English equivalents for each of the Russian terms
- •23.4 Complete the sentences using the following words
- •23.5 Complete and translate the following sentences
- •23.6 Answer the questions
- •Unit 24 сollapse of bridges and tunnels
- •24.1 Read the text, try to guess the meaning of the words you do not know, and then analyze how many meanings you can guess correctly or nearly correctly
- •24.2 Find the Russian equivalents for the following English terms
- •24.3 Find the English equivalents for each of the Russian terms
- •24.4 Complete the sentences using the following words and translate them into Russian
- •24.5 Translate the sentences into English paying attention to relevant terminology
- •24.6 Working in pairs, practice the questions below and support your opinion by using vivid examples. Make up your own questions
- •Unit 25
- •25.1 Read the text and try to complement its content with detailed information and interesting facts
- •25.2 Find the Russian equivalents for the following English terms and word combinations
- •25.3 Find the English equivalents for each of the Russian terms from the text
- •25.4 Complete the sentences using the following words and translate them into Russian
- •25.5 Complete and translate the following sentences
- •25.6 Answer the following questions
16.8 Find the answers to these questions in the text
What are the responsibilities of the State Acceptance Committee?
Why is it necessary to examine every structural component?
When can the railway subdivision open a new bridge for traffic?
What are the challenges for bridge maintenance?
What kinds of inspections may a bridge undergo throughout its lifetime?
Who performs the engineering supervision and inspection of long bridges?
What are the functions of a maintenance crew?
How many assessment categories are established in bridge conditions?
What techniques for testing bridge structural integrity and safety are currently used?
Why is constant bridge maintenance at the Trans-Siberian Railway required?
16.9 Role-play. “On-site review and visual inspection of the bridge components”
For this activity, you need to act in pairs. Assess the stage of the bridge’s condition and suggest your plan and ideas for current running service or general overhaul. Student A is the head of the maintenance crew. Student B is a supervisor. The rest of the students are the members of the crew.
Decide what you are going to say so that your behavior looks like a real-life performance. Make a list of problems you have to solve. Number them in order of importance. Do not forget about correct grammar and relevant vocabulary.
Unit 17 tunnel classification
17.1 Read the text and make a list of tunneling terminology
A tunnel is a long, completely enclosed on all sides man-made horizontal passage built under the ground with openings at each end. Tunnel entrance and exit are tunnel portals. The top half of the tunnel or the "roof" is the crown, and the bottom half is the invert. As tunnels must withstand tremendous pressure from all sides, the continuous arch is the ideal shape, especially for railway or motorway tunnels passing through a hill, under a building, road and river or under the sea (fig.17.1).
In general, tunnels must be at least twice as long as they are wide. Normally civic planners speak of a tunnel if it is at least as long as 0.16 km. A shorter structure is a chute. Relatively small-diameter tunnels serve as utility lines or pipelines.
Tunnels for transporting people by rail or by motor vehicles are rather complex structures accommodating two or more parallel passages for opposite-direction traffic, service machinery, and emergency exits.
|
|
a – Tunnel Portal |
b – Underwater Tunnel |
|
|
c – Railway Tunnel |
d – General Tunnel Structure |
Figure 17.1 Underground and Underwater Transport Tunnels
Underwater tunnels refer to immersed tunnels because they are commonly made of long, prefabricated tube sections, towed out to the construction site, and sunk in a dredged canal in the sea or riverbed (fig.17.2a). Sand or other backfill material cover immersed tunnels. These tunnels allow travel beneath bodies of water but they may obstruct or influence the moving of fish and create obstacles to water wildlife. Moreover, the immersion operations in waterways are rather difficult due to heavy currents, and in case of failure, this operation may result in serious cost escalation.
Many tunnels are technological masterpieces, for instance, the Seikan Tunnel that passes under the Tsugaru Strait. It is a 53-km long, 9.7-m diameter railway connection between the northern part of Japan’s main island of Honshu and the island of Hokkaido. Completed in 1988, it is the world’s longest person-carrying submarine tunnel. Its construction involved a 24-year struggle facing many challenges due to hard and soft rock excavation 100 m below the seabed where the sea is up to 140 m in depth.
|
|
a - Prefabricated tube sections for underwater (submerged) tunnels
|
b – A single tube section is ready for sinking |
|
|
c – An entrance to an underwater tunnel |
d - An underwater tunnel entrance with opposing traffic |
Figure 17.2 Underwater Transport Tunnels
The earliest tunnelling belonged to prehistoric people who had to enlarge their caves, and their tunnels were hand-dug. Then several ancient civilizations in the Indian and Mediterranean regions developed tunneling methods. About 2160 BC the inhabitants of Babylonia constructed the 900-m long brick-lined pedestrian passage under the Euphrates River. Roman engineers built an extensive network of tunnels to carry water from mountain springs to their densely populated cities and to drain sewage away. These tunnels were part of the well-known aqueduct systems, which included sloping bridge-like structures supported by arches, and carrying water to the city of Rome.
The earliest canals, as man-made waterways used for travel, shipping or irrigation, inspired the construction of transportation tunnels through hills or mountains. By the 20th century, railways and roads had replaced the use of canals, and the notable tunnels appeared all over the world because the developing transport system needed them badly. For instance, the Holland Tunnel between New York City and New Jersey, completed in 1927, was one of the first roadway tunnels. It is one of the world’s greatest engineering projects. Our country also constructed the world famous Severomuiskiy Tunnel that is 15.3 km long. It was open to traffic in 2003 on the Baikal-Amur railway in the Russian republic of Buryatia.
Tunnels serve for transportation including metro, road vehicles and trains. They are also necessary for ore mining, for conducting water and sewage, for pumping stations, for underground hydroelectric-power plants and for canals. Subways, pedestrian passages, etc. also use tunnels.
Tunnels are the most complicated and costly engineering structures because underground work deals with various difficulties worsened by flammable gas, the weaknesses of the ground, the water inflow, etc. It took $21 billion to complete the Channel Tunnel (fig. 17.3) that appeared to be the most expensive construction project being 700 times more expensive than the construction costs of the Golden Gate Bridge.
All tunnels can be classified into one of the following criteria:
Criterion 1. (Tunnel function):
1.1 Transportation tunnels. (for travelling and carrying goods by any type of vehicle.)
1.2 Mining tunnels. (for extracting coal or other minerals.)
1.3 Utility tunnels. (for heat supply, gas, electricity, vision cable and phones in large cities.)
1.4 Waterpower tunnels (for hydroelectric stations) or hydraulic tunnels (to supply water for consumption and for sewage)
1.5 Secret tunnels for military purposes.
Transportation tunnels may be classified in the following way:
Criterion 1.1 (Mode of transport):
Railway tunnels.
The Channel Tunnel, also called Euro tunnel, serves for freight and passenger traffic. It is 50 km long and runs underneath the English Channel between Folkestone, England, and Sangatte (near Calais), France. It consists of three tubes: two for rail traffic and a central one for services and security. Passengers can travel by ordinary rail coach or can stay within their own motor vehicles in special rail cars. The trip takes 35 minutes as trains travel at speeds as high as 160 km per hour.
1.1.2 Motorway tunnels.
1.1.3 Pedestrian tunnels.
1.1.4 Metro tunnels.
1.1.5 Navigation tunnels.
Criterion 2. (Tunnel location):
2.1 Flat ground tunnels.
2.2 Mountain tunnels. (for railways running through maintain ranges or watershed)
2.3 Underwater (submerged) tunnels or immersed tunnels.
The Mersey Tunnel in Great Britain links Liverpool (north) with Birkenhead (south). The construction began from both banks and the breakthrough took place beneath the riverbed in the middle of the river. Currently several tunnels beneath the Thames provide railway links (the twin Blackwall Tunnels – Southbound and Northbound), pedestrian walkways – the Greenwich Tunnel, and the first sub aqueous tunnel in the world, the Wapping-Rotherhithe Tunnel that was built in 1825, and refurbished in the late 1990s. This pedestrian horseshoe shaped cross-section tunnel is brick-lined. For many years, it was the largest soft-ground tunnel. Since 1913, the tunnel has been a part of the Tube.
Criterion 3. (Construction method):
3.1 Tunnels built by the cut-and-cover method.
3.2 Rock tunnels, built by the cutting method.
3.3 Shield driven tunnels.
Tunnelling under rivers was impossible until M. Brunel developed the protective shield in England. Jacks propel a shield forward and the workers put permanent lining segments in place under protection of the shield tail.
Criterion 4. (Tunnel laying depth):
4.1 Shallow-lying tunnels (up to 10 m deep).
4.2 Deep-laid tunnels (over 10 m deep).
Criterion 5. (Shape of the tunnel cross-section):
5.1 Rectangular section tunnels.
5.2 Circular section tunnels (the strongest shape).
5.3 Horseshoe section tunnels (flat bottom provides roadway).
|
|
a – A double deck motor tunnel |
b - A double deck road-cum-rail tunnel |
Figure 17.3 Double Deck Tunnels
Some tunnels are double-decked (fig.17.3), for example, the Eastern Harbour Crossing in Hong Kong where the lanes for motor vehicles and rails (the MTR metro) occupy different decks. Drivers of private cars, public buses and special purpose vehicles use either the manual tollbooths or auto toll service to pay tolls for crossing the tunnel.
Exercises