
- •Росжелдор
- •Unit 1 railway and motorway engineering structures
- •First, scan the text and then read it more carefully
- •1.2 Give the equivalents in Russian of the following terms
- •1.3 What are the English equivalents of the following Russian terms?
- •1.4 Complete and translate the following sentences using the word list
- •1.5 Translate into English the following sentences
- •1.6 Match the English and Russian terms
- •1.7 Answer the following questions
- •1.8 Render the text according to your plan and give the names of most famous railway and motorway engineering structures in Russia and abroad Unit 2 bridge crossing and its components
- •2.1 Read the following text and make a plan for it
- •Superstructure (пролётное строение); 2 – Pier (опора); 3 – Abutment (устой);
- •2.2 Give the Russian equivalents of the following terms
- •2.3 Give the English equivalents of the following terms
- •2.4 Complete and translate the following sentences
- •2.5 Translate into English the following sentences
- •2.6 Match the words in column a with column b
- •2.7 Read the questions and see if you can answer them
- •2.8 Render the text according to your plan Unit 3 bridge classification
- •3.1 Read the text and make up a bridgework glossary in Russian
- •3.2 Find the Russian equivalents for the following English terms
- •3.3 Find the English equivalents to the following Russian terms
- •3.4 Complete and translate the following sentences
- •3.5 Translate into English the following sentences
- •3.6 Answer the questions
- •3.7 Describe different bridge structures according to their structural design using the terminology below
- •Unit 4 bridges of moscow
- •4.1 Read the text to have a basic notion of bridges in the capital of Russia.
- •4.2 Find the Russian equivalents for the following English terms
- •4.3 Find the English equivalents to the following Russian terms:
- •4.4 Match English and Russian bridge terminology:
- •4.5 Complete and translate the sentences using the following terms
- •4.6 Translate into English the following sentences
- •4.7 Answer the following questions
- •4.8 Render the text according to your plan Unit 5 bridges of st petersburg
- •5.1 Have you ever been to St Petersburg? If so, try to complement the text with your own information. If not, try to enhance your professional range of knowledge
- •5.10 Translate the text into English
- •Unit 6 timber and masonry bridges
- •6.1 Read the text about different building materials. Compare them and say which one is more suitable for permanent or temporary structures
- •6.6 Complete and translate the following sentences
- •6.7 Translate the following sentences into English
- •6.8 Give a reason to support what you say answering to these questions
- •6.9 Express your ideas about the building qualities of stone and wood Unit 7 reinforced concrete bridges
- •7.1 Read the text and learn the terminology using the list of words
- •7.2 Find the Russian equivalents for the following English terms
- •7.3 Find the English equivalents to the following Russian terms
- •7.4 Make up the questions to the following answers
- •7.5 Complete and translate the following sentences using the Word list
- •7.6 Translate the following sentences into English
- •7.7 Discuss the following questions
- •Unit 8 metal bridges
- •8.1 Think of different building materials and answer the following questions
- •8.2 Read the text and check your answers. How much did you guess correctly?
- •8.3 Find the Russian equivalents for the following English terms
- •8.4 What are the English equivalents for the following Russian terms?
- •8.5 Say whether these statements are true
- •8.6 Match the Russian and English terms
- •8.7 Complete and translate the following sentences
- •8.8 Translate the following sentences into English
- •Unit 9 bridges of great britain
- •9.1 Read the text and improve your knowledge of foreign experiences in bridge building
- •9.2 Tell the story of the Old London Bridge using the following terms
- •9.3 Read the text about famous London bridges and tell about them
- •9.4 Find the Russian equivalents for the following English terms
- •9.5 Read the text about the most astonishing British bridges and tell about them
- •9.6 Find the Russian equivalents for the following English terms
- •9.7 Complete and translate the following text
- •9.8 Complete the following sentences using your own ideas
- •9.9 Answer the following questions
- •9.10 Translate the text into English
- •10.1 After reading the text, prove the idea that suspension structures are the safest among bridgeworks
- •10.2 Find the Russian equivalents for the following English terms
- •10.3 Make up examples with the terms describing a suspension structure
- •10.4 Choose which statements are true
- •10.5 Complete and translate the following sentences
- •10.6 Translate the following sentences into English
- •10.7 Answer the following questions
- •10.8 Describe the Golden Gate Bridge using the following information
- •10.9 Consult this list of bridge terminology while doing the exercises
- •Unit 11 bridges of novosibirsk
- •11.1 Having read the text, complete the information with details you may notice in the pictures
- •11.2 Find the Russian equivalents for the following English terms
- •11.3 Find the Russian equivalents for the following English terms
- •11.4 Match the English and Russian terms
- •11.5 Translate the following sentences into English
- •11.6 Answer the following questions
- •11.7 What bridge across the Ob River do you prefer and why? Express your opinion using the following word combinations
- •11.8 Describe your “dream bridge”. Do you have any ideas that will surprise your classmates? Think of a place for “your” bridge. Unit 12 bridge or tunnel?
- •12.1 Read the text and give your reasons for making a choice between a bridge and a tunnel
- •12.2 Find the Russian equivalents for the following English terms
- •12.3 Find the Russian equivalents for the following English terms
- •12.4 Complete and translate the following sentences using the word list
- •12.5 Translate the following sentences into English
- •12.6 Think over the problems and give your reasons for the right solution
- •12.7 Read this interview and make up your own dialogue using the following expressions
- •Unit 13 construction of supports and foundations
- •13.1 Read the text to get a clear idea of building materials and construction technologies for piers and foundations. Go down the word list and take note of professional terminology.
- •13.2 Find the Russian equivalents for the following English terms
- •13.3 Find the Russian equivalents for the following English terms
- •13.4 Translate the following information into Russian, consulting the terminology list and using the word combinations given below
- •13.5 Translate the following information into English using the terminology list
- •13.6 Give your reasons to support the answers to these questions
- •Unit 14 superstructure construction
- •14.1 Read the text and pay attention to the differences in the various techniques of superstructure construction
- •14.2 Find the Russian equivalents for the following English terms
- •14.3 Find the Russian equivalents for the following English terms
- •14.4 Complete and translate the following sentences using the terminology from previous text and the word list (14.6)
- •14.5 Translate the following sentences into English
- •14.6 Find the relevant information in the texts to answer these questions
- •14.7 Describe superstructure construction methods using the following word combinations
- •Unit 15 construction of suspension and cable-stayed bridges
- •15.1 Read the text and pay attention to the peculiarities of suspension superstructure construction
- •15.2 Find the Russian equivalents for the following English terms
- •15.3 Find the Russian equivalents for the following English terms
- •15.4 Complete and translate the sentences using the following words
- •15.5 Translate the following sentences into English
- •15.6 Find the relevant information in the texts to answer these questions
- •15.7 Describe superstructure construction methods. Remember the following word combinations
- •Unit 16 bridge maintenance
- •16.1 Read the text and make a list of the main ideas you should remember as a future bridge builder
- •16.2 Find the Russian equivalents for the following English terms:
- •16.3 Find the English equivalents for the following Russian terms
- •16.4 Match the equivalents
- •16.5 Complete the following sentences
- •16.6 Read the text and find the equivalents for the following terms
- •16.7 Translate the following sentences into English using terminology from this unit
- •16.8 Find the answers to these questions in the text
- •16.9 Role-play. “On-site review and visual inspection of the bridge components”
- •Unit 17 tunnel classification
- •17.1 Read the text and make a list of tunneling terminology
- •17.2 Find the Russian equivalents for the following English terms
- •17.3 Find the English equivalents for the following Russian terms
- •17.4 Complete and translate the following sentences using the Word list.
- •8 Side Wall Drift (боковая штросса); 9 – Lining (обделка тоннеля);
- •– Tunnel Foot (подошва тоннеля)
- •17.5 Translate the following sentences into English using terminology from the texts. Tell a partner what you found most interesting
- •17.5 Answer the questions using the information from the text and your own ideas
- •17.6 Describe any tunnel using the information model from the following.
- •Unit 18 construction methods of tunnels
- •18.1 Read the text and define recent trends in unneling
- •18.2 Find the Russian equivalents for the following English terms
- •18.3 Find the English equivalents for the following Russian terms
- •18.4 Complete the following sentences using the word list and translate them
- •18.5 Translate the following sentences into English using terminology from previous texts
- •18.6 Make up the answers to these questions. Use the Word list
- •18.7 Read the dialogue below and retell it with a partner
- •18.8 Disagree with each statement
- •Unit 19 shield tunnelling
- •19.1 Read the text to have an idea of state-of-the-art tbm’s
- •Figure 19. 7 Technological Process by the Slurry Shield Complex
- •19.2 Find the Russian equivalents for the following English terms
- •19.3 Find the English equivalents for each of the Russian terms
- •19.4 Complete and translate the following sentences using the list of word combinations below
- •19.5 Complete the following sentences using your own ideas and the Word list below.
- •19.6 Translate the sentences into English
- •19.7 Answer the following questions
- •Unit 20 general idea of the metro
- •20.1 Read the text and find out peculiarities in the underground railway systems of different countries
- •20.2 Find the Russian equivalents for the following English terms
- •20.3 Find the English equivalents for each of the Russian terms from the text
- •20.4 Complete and translate the sentences using the following words and word combinations
- •20.6 Think of the answers and give a reason to support what you say
- •20.7 Complete the following sentences in a suitable way
- •20.8 Discuss the ideas expressed by these two engineers suggesting their solution of public transport development in modern cities
- •Unit 21 the novosibirsk metro
- •21.1 Read the text and complement it with more details from the history and present-day operation of the Novosibirsk Metro
- •21.2 Find the Russian equivalents for the following English terms
- •21.3 Find the English equivalents for each of the Russian terms
- •21.4 Complete the sentences using the following words and render this text in English
- •21.5 Complete and translate the following sentences
- •21.6 Discuss the following questions
- •21.7 Read the dialogue and compose your own conversation with a partner. Use the words and expressions from the model
- •21.8 Try to guess the meaning of the following word combination
- •21.10 Ask each other questions to test your knowledge of the unit Unit 22 structures in the underground
- •22.1 Read the text consulting the Word list for better understanding
- •22.2 Find the Russian equivalents for the following English terms
- •22.3 Find the English equivalents for each of the Russian terms from the text
- •22.4 Translate the sentences using the necessary English equivalents.
- •22.5 Translate the sentences into English paing attention to relevant terminology
- •22.6 Choose which statement is true
- •22.7 Discuss the following questions
- •Unit 23 tunnel maintenance
- •23.1 Having read the text try to prove the idea that tunnel maintenance is much more expensive compared to bridge maintenance. Give your reasons
- •23.2 Find the Russian equivalents for the following English terms
- •23.3 Find the English equivalents for each of the Russian terms
- •23.4 Complete the sentences using the following words
- •23.5 Complete and translate the following sentences
- •23.6 Answer the questions
- •Unit 24 сollapse of bridges and tunnels
- •24.1 Read the text, try to guess the meaning of the words you do not know, and then analyze how many meanings you can guess correctly or nearly correctly
- •24.2 Find the Russian equivalents for the following English terms
- •24.3 Find the English equivalents for each of the Russian terms
- •24.4 Complete the sentences using the following words and translate them into Russian
- •24.5 Translate the sentences into English paying attention to relevant terminology
- •24.6 Working in pairs, practice the questions below and support your opinion by using vivid examples. Make up your own questions
- •Unit 25
- •25.1 Read the text and try to complement its content with detailed information and interesting facts
- •25.2 Find the Russian equivalents for the following English terms and word combinations
- •25.3 Find the English equivalents for each of the Russian terms from the text
- •25.4 Complete the sentences using the following words and translate them into Russian
- •25.5 Complete and translate the following sentences
- •25.6 Answer the following questions
13.6 Give your reasons to support the answers to these questions
What loads can bridges resist?
Is reinforced concrete a widely used building material for constructing piers?
According to building methods, concrete piers may belong to one of three groups. What are they?
What is the difference between сast-in-situ piers and precast concrete piers? What do they have in common?
What construction technology is suitable for foundations on solid rock?
Why do the foundations require the sheet piling?
What methods do the workers employ for building a pier in a river?
What is the method of consolidating soil in the water?
The Terminology List
1. Arched falsework |
опалубочные кружала |
2. Bottom silt |
донные отложения |
3. Casing |
обсадная труба, опалубка |
4. Concrete setting |
усадка бетона, схватывание бетона |
5. Deep foundations |
фундамент глубокого заложения |
6. Drilled pier, bored pile |
буровая свая |
7. Grillage, mat foundation, raft foundation |
ростверк |
8. Grouting mortar |
тампонажный раствор |
9. Hollow shaft |
пустотелый цилиндр |
10. Hollow-shell pile, encased pile, cylinder |
свая-оболочка |
11. In situ concrete pile |
набивная бетонная свая |
12. Pile driver |
свайный копер |
13. Shallow foundations |
фундамент мелкого заложения |
14. Sheet piling, enclosing sheeting |
шпунтовое ограждение/стенка |
15. Shrinkage crack |
усадочная трещина |
Unit 14 superstructure construction
14.1 Read the text and pay attention to the differences in the various techniques of superstructure construction
The variety of superstructure construction methods is rather wide. Each selected method depends on site constraints, height above ground or water, the type of span, span length, building material, architectural requirements, etc. The length of the span determines construction methods. For short and intermedium spans, the choice of construction methods is very wide. Long spans are restricted to continuous through girder or cantilever through girder. The only suitable form for extremely long spans is a stiffened suspension bridge.
The simplest construction technique is conventional lifting used for single beam spans. Standard steel and reinforced concrete beams are shipped to the site, and the cranes place them in design position (fig. 14.1a; 14.2a) parallel to each other (fig.14.1b). They are covered with slabs and concrete. When a bridge is a continuous one, each simple beam resting on two supports is sequentially joined to the next one and forms a continuous beam (fig. 14.1).
|
|
a – Superstructure erection by crane (монтаж пролетного строения краном) |
b – Standard beams are placed to each other and covered with floor beams |
Figure 14.1 Superstructure Construction by Conventional Lifting
Usually concrete segments or plate girders, called I-beams, are suitable for long spans. They consist of deep vertical webs with top and bottom chords welded or bolted to the webs. To reduce bending at the middle of a longer span, bridge engineers use haunched beams with a cross section that is shallower at mid-span and deeper at the supports. Extremely heavy precast segments may be hoisted using hydraulic lifting techniques.
Figure 14.2 Superstructure Construction (монтаж пролётного строения моста)
a – Erection of Discontinuous Beam (монтаж разрезных балок); b – Erection by launching (продольная надвижка); c – Balanced concrete casting (навесное бетонирование);
d – Balanced cantilever erection (навесной монтаж).
1 – Pier (опора); 2 – Beam (балка); 3 – Crane (кран); 4 – Launching Nose (аванбек);
5 – Embankment (насыпь); 6 – Travelling Shuttering (передвижная опалубка);
7 – Poured Concrete (уложенный бетон); 8 – Superstructure Block (блок пролётного строения); 9 – Juncture (шов)
Superstructure construction methods use various construction machinery including stationary or traveling falsework and temporary towers. Falsework determines the shape of arches or bridge shapes with geometrically complicated alignments. Temporary towers provide additional support for a superstructure during its building up. Commonly, there are three major erection methods - balanced cantilever construction (fig. 14.2d), balanced concrete casting (fig. 14.2c) and incremental launching (fig. 14.2b) employed in bridge superstructure construction along with a wide range of different adapted techniques.
|
|
a - Erection of continuous beam by incremental launching (продольная надвижка неразрезной балки) |
b – Cast-in-place cantilevering (метод навесного уравновешенного бетонирования ) |
|
|
c - Erection by floating into position (монтаж пролётного строения методом «на плаву») |
d – Semi arch erection afloat (монтаж полуарок «на плаву») |
|
|
e – Superstructure erection afloat (монтаж пролетного строения «на плаву») |
f - Steel arch is being lifted simultaneously with supporting (арка поднимается одновременно с сооружением опор) |
Figure 14.3 Various construction methods for superstructure erection
Incremental launching is a highly mechanised construction method. It is specifically suited for multi-span superstructures for very long gaps spanned by reinforced concrete continuous girders. These post-tensioned girders, cast on the bank behind one of the abutments, are from 15m to 30 m long. They are cast over a casting bed in a stationary formwork. Then cured and ready girders are pushed to the final position (fig. 14.2b). Each sufficiently hard newly cast segment is launched along the bridge axis in small increments with hydraulic jacks or by temporary sliding bearings. As the length of segments is long, and reinforced concrete has rather high density, builders use a launching nose attached to the cantilevering segment. The launching nose reduces the bending moment in the girder (fig. 14.2b; 14.3a).
This erection method has numerous advantages such as falsework elimination, reduced investment for special equipment, etc. However, it also has certain disadvantages, which limit its use: the concrete has to be prestressed in advance, and it needs time to reach a required density. Besides, the stationary casting bed cannot allow large changes in superstructure curvature.
Two cantilevering methods - cast-in-place cantilevering and balanced cantilever construction are suitable for framed suspended bridges, flyovers and trestles. Both fashions of cantilevering by building up new segments are very advantageous for bridging even inaccessible natural barriers.
Cast-in-place cantilevering or balanced concrete casting employs travelling shuttering for mounting the cast-in-situ segments that may achieve the length of 5.00 m (fig. 14.2c). The mobile frame, attached to the cantilever tip, supports the formwork with the newly cast segments. The mobile frame moves within the existing portion of the superstructure and constructs cantilever arms on either side of the supports. It stays in place until a newly cast segment gains sufficient strength, and then it moves forward. Normally, the duration of a casting cycle is about a week. In-situ concreting advances symmetrically, and finally cantilever arms connectd at midspan. The important advantage of this metod is that it leaves the waterway or valley beneath the bridge unobstructed during the superstructure construction.
Structures of intermedium and long spans require cantilevering method, known as a balanced cantilever construction, when the erection of scaffolding is unfeasible due to site constraints. Cable-stayed bridges are ideally appropriate for construction by segments, prefabricated in casting yards. They are transported to the construction site where the workers mount them by gantry cranes or by mobile equipment, such as swivel cranes, fixed to the deck (fig. 14.3c).
As a rule, the superstructure construction starts from short stubs on top of piers, and proceeds symmetrically forming cantilever arms toward the midspan. The segments are stuck together with an epoxy adhesive or cement. This construction method leaves no possibility for later correction, and the workers fix segments exactly in the right position. Once cantilever arms are completed, they place the closure segment between them to construct a continuous superstructure.
Cantilever span may have either two arms proceeding from both sides of a pier or only one arm increasing from its abutment or on one side of a pier. When two cantilever arms are balanced in a scales-like fashion, cantilevering requires Balanced Cantilever Construction. The second type of cantilever system consisting only of one arm requires the Progressive Placement Method. In this case, the superstructure may need temporary towers.
A launching truss or launching girder is a different type of construction equipment for placing into position the set of precast segments or for casting segments at opposite sides of the same pier. The launching truss propels itself forward assembling the superstructure span-by-span. This method is suitable for multi-span bridges when scaffolding is not feasible due to site constraints or difficult terrain conditions. The length and configuration of launching trusses provide a very high speed of construction.
Arch bridges require rather complicated construction technology. The traditional method demands temporary piers and arch centering to reproduce the shape of the arch superstructure (fig. 14.4a). The precast reinforced concrete segments are placed on an arch centering.
Figure 14.4 Superstructure Construction
a – Arch Erection by Arched Falsework (монтаж арки на подмостях); b - Arch Erection Afloat (монтаж арки на плаву); c –Long Beam Erection (монтаж длинных балок); d – Erection of Trussed Girder (монтаж сквозных ферм);
1 – Arch (арка); 2 - Arch Centering (кружала); 3 – Pier (опора); 4 – Pontoon (понтон); 5 – Block Junction (стык блоков); 6 – Trussed Girder (сквозная ферма); 7 – Crane (кран)
The cast-in-situ concrete arch is erected in a curved framework. The construction of arches above water is a much more advanced technique. The arches and semi-arches are assembled on the bank and transported to a barge, which carries these structures to the place (fig. 14.3d,e).
Exercises