- •Основи електроніки навчальний посібник на базі програми схемотехнічного моделювання «multisim»
- •2.12. Поточний самоконтроль 83
- •2.10.1. Тестові контрольні запитання 83
- •3.7 Поточний самоконтроль 117
- •4.13. Поточний самоконтроль 166
- •5.10. Поточний самоконтроль 195
- •6.7. Поточний самоконтроль 230
- •7.5. Поточний самоконтроль 264
- •Передмова
- •Частина 1. Базові визначення, параметри та характеристики Розділ 1. Електричні інформаційні сигнали та типові системи їх обробки.
- •1.1. Узагальнена структура інформаційних систем
- •1.2 Компоненти радіоелектронної апаратури
- •1.2.1 Класифікація
- •1.2.2. Пасивні компоненти
- •1.2.3. Активні компоненти – електронні прилади
- •1.3. Типові процеси обробки еіс
- •1.4 Аналіз електронних пристроїв за постійним струмом, в частотній та часовій областях
- •1.5 Відносні та логарифмічні коефіцієнти підсилення
- •1.6.1 Класифікація
- •1.6.2 Подільники напруги
- •1.6.3. Генератори напруги та струму
- •1.6.5. Дослідження диференціюючих rc-схем
- •1.6.6. Дослідження інтегруючих rc-схем
- •1.7. Типові електронні інформаційні системи
- •1.7.1. Електроніка та радіотехніка
- •1.7.2. Вимірювальна система
- •1.7.3. Аналогові та цифрові системи
- •1.8.1. Основні постулати радіоелектроніки
- •1.8.2. Наноелектроніка
- •1.9. Поточний самоконтроль
- •1.9.1. Завдання для дослідження схем в ms
- •1.9.2. Тестові контрольні запитання
- •Частина іі. Активні компоненти реа Розділ 2. Електронно-дірковий перехід – напівпровідникова базова структура твердотілих компонентів реа
- •2.1. Класифікація речовин за провідністю
- •2.2. Дрейфовий та дифузійний струми власних напівпровідників
- •2.3 Домішкові напівпровідники
- •2.4. Визначення та класифікація електричних переходів
- •2.5. Електронно-дірковий перехід в стані рівноваги
- •2.6. Пряме та зворотне вмикання едп
- •2.7. Вольт-амперна характеристика ідеалізованого едп
- •2.8. Ємнісні властивості p-n переходу
- •2.9. Пробій p-n переходу
- •2.10. Перехід метал-напівпровідник
- •2.11. Особливості р-n переходів та їх використання для побудови різноманітних компонентів електронної апаратури
- •2.12. Поточний самоконтроль
- •2.10.1. Тестові контрольні запитання
- •Розділ 3. Напівпровідникові діоди та їх використання
- •3.1. Визначення, структура та класифікація
- •3.2. Вольт-амперна характеристика
- •3.3. Параметри нд
- •3.4. Модель та частотні властивості нд
- •3.5. Основні види пробою нд
- •3.6.Типові функціональні пристрої
- •3.6.1. Випрямлячі
- •3.6.3. Імпульсні діоди
- •3.6.4. Напівпровідникові стабілітрони. Параметричні стабілізатори напруги
- •3.6.5. Обмежувачі амплітуди
- •3.6.6. Варикапи та їх використання
- •3.6.7. Діоди Шотткі
- •3.7 Поточний самоконтроль
- •3.7.2 Контрольні запитання
- •Розділ 4. Біполярні транзистори
- •4.1. Структури, режими та схеми вмикання
- •4.2.Фізичні процеси в бт
- •Повний струм колектора
- •4.3. Статичні характеристики бт
- •4.3.1. Статичні характеристики бт із се
- •4.3.2. Статичні характеристики бт із сб
- •4.4. Температурний дрейф характеристик бт
- •4.5. Підсилення за допомогою бт
- •4.6. Графоаналітичний метод аналізу та розрахунку транзисторних схем
- •Коефіцієнт підсилення за струмом:
- •4.7. Динамічні властивості біполярних транзисторів
- •4.8. Ключовий режим бт
- •4.9. Порівняльний аналіз трьох схем вмикання бт
- •4.10. Власні шуми та шумові параметри транзисторів
- •4.11. Температурний режим та пробій бт
- •4.12. Основні типи біполярних транзисторів
- •4.13. Поточний самоконтроль
- •5. Польові транзистори
- •5.1. Типи польових транзисторів
- •5.2. Польовий транзистор з керувальним p-n‑переходом
- •5.4. Польові транзистори з ізольованими затворами
- •5.6. Ключовий режим мдн-транзистора
- •5.7. Температурні залежності та шуми польових транзисторів
- •5.8. Класифікація та особливості використання польових транзисторів
- •5.9. Порівняння польових та біполярних транзисторів
- •5.10. Поточний самоконтроль
- •5.10.2.Контрольні запитання
- •Розділ 6. Інтегральні мікросхеми
- •6.1. Особливості імс як активних компонентів
- •6.2. Класифікація інтегральних мікросхем
- •6.3.Аналогові інтегральні мікросхеми
- •6.3.1. Основні типи аіс
- •6.3.2. Схеми стабілізації режиму роботи каскаду підсилення.
- •6.3.3. Схеми зсуву рівнів напруг
- •6.4.Однокаскадні багатоцільові підсилювачі
- •6.5.Диференціальні підсилювачі
- •6.6. Операційні підсилювачі
- •6.6.1. Особливості оп
- •Р ис. 6.8. Принципова схема оп
- •6. 6. 2. Інвертувальна схема вмикання оп
- •Напругу на виході визначають напругою на конденсаторі:
- •6.6.4. Імпульсний режим оп
- •6.7. Поточний самоконтроль
- •6.7.2. Контрольні запитання
- •Розділ 7. Оптоелектронні напівпровідникові прилади
- •7.1. Особливості оптоелектроніки
- •7.2. Джерела оптичного випромінювання
- •7.2.1.Люмінесценція
- •7.2.2. Електролюмінесцентні індикатори
- •7.2.3. Випромінювальні діоди
- •7.3. Фотоелектричні напівпровідникові приймачі випромінювання
- •7.3.1. Внутрішній фотоефект
- •7.3.3. Фотодіоди
- •7.3.4. Фототранзистори
- •7.4. Оптрони та оптоелектронні імс
- •7.5. Поточний самоконтроль
- •7.5.1. Завдання для моделювання та дослідження схем в середовищі ms
- •Дослідити формування вихідних сигналів при надходженні інформаційних сигналів від двох джерел.
- •7.5.2.Контрольні запитання
- •Частина ш. Функціональні пристрої реа
- •8.1. Визначення, структурні схеми та класифікація підсилювачів
- •8.2. Основні характеристики та параметри еп
- •Для багато каскадного підсилювача
- •8.3. Підсилювачі з резистивно-ємнісним зв`язком
- •8.3.1. Особливості підсилювачів з резистивно-ємнісним зв`язком
- •8.3.2. Дослідження в частотній області.
1.5 Відносні та логарифмічні коефіцієнти підсилення
В радіоелектроніці для оцінки послаблення або підсилення потужностей широко застосовується логарифмічна одиниця: децибел (дБ). Наприклад, якщо потужність на вході підсилювача позначити Р1, потужність на його виході Р2, то підсилення потужності в децибелах визначається: Км= 10 lg(Р2/ Р1) [дБ].
Приймальний пристрій нерідко повинен забезпечувати посилення потужності в 1012—1014 разів. Це відповідає посиленню на 120—140 дБ. При послідовному вмиканні підсилювачів загальне підсилення у відносних одиницях дорівнює добутку коефіцієнтів підсилення окремих каскадів, а загальне підсилення в децибелах рівне сумі підсилень окремих каскадів (в децибелах).
У радіоелектроніці найчастіше вимірюються не потужності, а напруги за допомогою електронних вольтметрів. Відомо, що потужності пропорційні квадратам напруг або струмів, тому відношення двох потужностей (в децибелах) можна подати як Ки = 20 lg (U2/U1 );
=20
lg (I2/I1).
У децибелах прийнято вимірювати не тільки посилення, але і ослаблення. В даному випадку перед числом децибел стоїть знаку мінус. Якщо при цьому знак мінус чогось упущений, то передбачається, що замість відношення U2/U1 під знаком логарифма стоїть зворотне відношення U1/U2.
Коефіцієнти підсилення не залишаються сталими в широкій смузі частот. АЧХ має спад в області нижніх та верхніх частот.
Співвідношення між відносними та логарифмічними одиницями подані в таблиці 1.1.
Я
Рис.
1.10. Амплітудно-частотна характеристика
RC-підсилювача.
к
приклад на рис.1.10
подана АЧХ найбільш поширених підсилювачів
з резистивно-ємнісним зв`язком (RC-
підсилювачів), які мають спад коефіцієнта
передачі як в області нижніх (fн),
так і в області верхніх (fв)
частот.
Таблиця 1.1.
Б |
U2/U1 |
Р2/ Р1 |
Б |
U2/U1 |
Р2/ Р1 |
Б |
U2/U1 |
Р2/ Р1 |
0 |
1 |
1 |
1,2 |
1,15 |
1,32 |
12 |
3,98 |
15,8 |
0,1 |
1,01 |
1,02 |
1,5 |
1.19 |
1.41 |
15 |
5,62 |
31,6 |
0,2 |
1,02 |
1,05 |
2 |
1,26 |
1,56 |
20 |
10 |
100 |
0,3 |
1,03 |
1,07 |
3 |
1,41 |
≈2 |
30 |
31,6 |
103 |
0,4 |
1,05 |
1,10 |
4 |
1,58 |
2,51 |
40 |
102 |
104 |
0,5 |
1,06 |
1.12 |
5 |
1,78 |
3,16 |
50 |
316 |
105 |
0,6 |
1,07 |
1,15 |
6 |
≈2 . |
≈4 |
60 |
103 |
106 |
0,7 |
1,09 |
1,18 |
7 |
2,24 |
5,01 |
70 |
3160 |
107 |
0,8 |
1,10 |
1,20 |
8 |
2,51 |
6,31 |
80 |
I04 |
108 |
0,9 |
1,11 |
1,23 |
9 |
2,82 |
7,94 |
90 |
3,16*104 |
109 |
1.0 |
1,12 |
1,26 |
10 |
3,16 |
10 |
100 |
105 |
1010 |
При
визначенні межових частот за висхідну
величину беруть максимальний коефіцієнт
передачі
(в області середніх частот). Якщо
користуються відносними одиницями, АЧХ
нормують
(
),
де
коефіцієнт підсилення на заданій частоті
Тоді в області середніх частот К = 1, а
межові частоти визначають при зменшенні
коефіцієнта
передачі до рівня 0,5
при підсиленні потужності до рівня
0,707 при підсиленні напруги або струму.
Такий спад коефіцієнтів передачі
відповідає спаду на – 3 дБ.
Ці цифри визначають верхню та нижню межові частоти електронних пристроїв, в діапазоні яких інформаційний сигнал передається з допустимими частотними (лінійними) спотвореннями.
При використанні логарифмічного масштабу спочатку визначають коефіцієнт передачі в децибелах в області середніх частот (на рис. 1.10 це 30 дБ), а потім визначають межові частоти, на яких коефіцієнт передачі спадає на – 3дБ (на рис. 1.10 це 27дБ).
Спроможність радіоелектронного функціонального пристрою передавати та обробляти ЕІС з заданими похибками оцінюють за допомогою встановленого Державними стандартами переліку параметрів та характеристик. Нижче зупинимось лише на частотних та перехідних характеристиках. По-перше, вони інформативні, охоплюють ряд показників. По-друге, дозволяють при вивчені різноманітних функціональних вузлів оцінити вплив окремих компонентів на роботу та параметри пристроїв.
Елементарні вузли (електронні підсилювачі) та більш складні пристрої з метою аналізу в частотній та часовій областях можна моделювати за допомогою відповідного включення диференціюючих та інтегруючих схем. Пропоную ретельно вивчити й проаналізувати характеристики таких схем. Вони розглядаються в розділах 1.5.4 та 1.5.5. Вирішивши цю задачу, одержите потужну базу для оволодіння наступним матеріалом та неформального вивчення складних пристроїв і систем.
1.6. Типові схемні елементи РЕА
