- •Основи електроніки навчальний посібник на базі програми схемотехнічного моделювання «multisim»
- •2.12. Поточний самоконтроль 83
- •2.10.1. Тестові контрольні запитання 83
- •3.7 Поточний самоконтроль 117
- •4.13. Поточний самоконтроль 166
- •5.10. Поточний самоконтроль 195
- •6.7. Поточний самоконтроль 230
- •7.5. Поточний самоконтроль 264
- •Передмова
- •Частина 1. Базові визначення, параметри та характеристики Розділ 1. Електричні інформаційні сигнали та типові системи їх обробки.
- •1.1. Узагальнена структура інформаційних систем
- •1.2 Компоненти радіоелектронної апаратури
- •1.2.1 Класифікація
- •1.2.2. Пасивні компоненти
- •1.2.3. Активні компоненти – електронні прилади
- •1.3. Типові процеси обробки еіс
- •1.4 Аналіз електронних пристроїв за постійним струмом, в частотній та часовій областях
- •1.5 Відносні та логарифмічні коефіцієнти підсилення
- •1.6.1 Класифікація
- •1.6.2 Подільники напруги
- •1.6.3. Генератори напруги та струму
- •1.6.5. Дослідження диференціюючих rc-схем
- •1.6.6. Дослідження інтегруючих rc-схем
- •1.7. Типові електронні інформаційні системи
- •1.7.1. Електроніка та радіотехніка
- •1.7.2. Вимірювальна система
- •1.7.3. Аналогові та цифрові системи
- •1.8.1. Основні постулати радіоелектроніки
- •1.8.2. Наноелектроніка
- •1.9. Поточний самоконтроль
- •1.9.1. Завдання для дослідження схем в ms
- •1.9.2. Тестові контрольні запитання
- •Частина іі. Активні компоненти реа Розділ 2. Електронно-дірковий перехід – напівпровідникова базова структура твердотілих компонентів реа
- •2.1. Класифікація речовин за провідністю
- •2.2. Дрейфовий та дифузійний струми власних напівпровідників
- •2.3 Домішкові напівпровідники
- •2.4. Визначення та класифікація електричних переходів
- •2.5. Електронно-дірковий перехід в стані рівноваги
- •2.6. Пряме та зворотне вмикання едп
- •2.7. Вольт-амперна характеристика ідеалізованого едп
- •2.8. Ємнісні властивості p-n переходу
- •2.9. Пробій p-n переходу
- •2.10. Перехід метал-напівпровідник
- •2.11. Особливості р-n переходів та їх використання для побудови різноманітних компонентів електронної апаратури
- •2.12. Поточний самоконтроль
- •2.10.1. Тестові контрольні запитання
- •Розділ 3. Напівпровідникові діоди та їх використання
- •3.1. Визначення, структура та класифікація
- •3.2. Вольт-амперна характеристика
- •3.3. Параметри нд
- •3.4. Модель та частотні властивості нд
- •3.5. Основні види пробою нд
- •3.6.Типові функціональні пристрої
- •3.6.1. Випрямлячі
- •3.6.3. Імпульсні діоди
- •3.6.4. Напівпровідникові стабілітрони. Параметричні стабілізатори напруги
- •3.6.5. Обмежувачі амплітуди
- •3.6.6. Варикапи та їх використання
- •3.6.7. Діоди Шотткі
- •3.7 Поточний самоконтроль
- •3.7.2 Контрольні запитання
- •Розділ 4. Біполярні транзистори
- •4.1. Структури, режими та схеми вмикання
- •4.2.Фізичні процеси в бт
- •Повний струм колектора
- •4.3. Статичні характеристики бт
- •4.3.1. Статичні характеристики бт із се
- •4.3.2. Статичні характеристики бт із сб
- •4.4. Температурний дрейф характеристик бт
- •4.5. Підсилення за допомогою бт
- •4.6. Графоаналітичний метод аналізу та розрахунку транзисторних схем
- •Коефіцієнт підсилення за струмом:
- •4.7. Динамічні властивості біполярних транзисторів
- •4.8. Ключовий режим бт
- •4.9. Порівняльний аналіз трьох схем вмикання бт
- •4.10. Власні шуми та шумові параметри транзисторів
- •4.11. Температурний режим та пробій бт
- •4.12. Основні типи біполярних транзисторів
- •4.13. Поточний самоконтроль
- •5. Польові транзистори
- •5.1. Типи польових транзисторів
- •5.2. Польовий транзистор з керувальним p-n‑переходом
- •5.4. Польові транзистори з ізольованими затворами
- •5.6. Ключовий режим мдн-транзистора
- •5.7. Температурні залежності та шуми польових транзисторів
- •5.8. Класифікація та особливості використання польових транзисторів
- •5.9. Порівняння польових та біполярних транзисторів
- •5.10. Поточний самоконтроль
- •5.10.2.Контрольні запитання
- •Розділ 6. Інтегральні мікросхеми
- •6.1. Особливості імс як активних компонентів
- •6.2. Класифікація інтегральних мікросхем
- •6.3.Аналогові інтегральні мікросхеми
- •6.3.1. Основні типи аіс
- •6.3.2. Схеми стабілізації режиму роботи каскаду підсилення.
- •6.3.3. Схеми зсуву рівнів напруг
- •6.4.Однокаскадні багатоцільові підсилювачі
- •6.5.Диференціальні підсилювачі
- •6.6. Операційні підсилювачі
- •6.6.1. Особливості оп
- •Р ис. 6.8. Принципова схема оп
- •6. 6. 2. Інвертувальна схема вмикання оп
- •Напругу на виході визначають напругою на конденсаторі:
- •6.6.4. Імпульсний режим оп
- •6.7. Поточний самоконтроль
- •6.7.2. Контрольні запитання
- •Розділ 7. Оптоелектронні напівпровідникові прилади
- •7.1. Особливості оптоелектроніки
- •7.2. Джерела оптичного випромінювання
- •7.2.1.Люмінесценція
- •7.2.2. Електролюмінесцентні індикатори
- •7.2.3. Випромінювальні діоди
- •7.3. Фотоелектричні напівпровідникові приймачі випромінювання
- •7.3.1. Внутрішній фотоефект
- •7.3.3. Фотодіоди
- •7.3.4. Фототранзистори
- •7.4. Оптрони та оптоелектронні імс
- •7.5. Поточний самоконтроль
- •7.5.1. Завдання для моделювання та дослідження схем в середовищі ms
- •Дослідити формування вихідних сигналів при надходженні інформаційних сигналів від двох джерел.
- •7.5.2.Контрольні запитання
- •Частина ш. Функціональні пристрої реа
- •8.1. Визначення, структурні схеми та класифікація підсилювачів
- •8.2. Основні характеристики та параметри еп
- •Для багато каскадного підсилювача
- •8.3. Підсилювачі з резистивно-ємнісним зв`язком
- •8.3.1. Особливості підсилювачів з резистивно-ємнісним зв`язком
- •8.3.2. Дослідження в частотній області.
6.2. Класифікація інтегральних мікросхем
Інтегральні мікросхеми поділяють за технологією виготовлення, ступенем інтеграції, функціональним призначенням. За принципами будови та технологією виготовлення ІМС поділяють на такі основні типи: напівпровідникові, плівкові, гібридні, суміщені.
Напівпровідниковою називають ІМС, яка має один кристал напів-провідника, в об’ємі і на поверхні якого спеціальними технологічними методами сформовані всі елементи, міжелементні з’єднання і контактні площинки.
Як
приклад на рис.6.1, а
показано елементи напівпровідникової
ІМС, які відповідають фрагменту
електронної схеми, (рис.6.1, б).
Основними активними елементами
напівпровідникових ІМС можуть бути БТ,
або ПТ. Тому розрізняють біполярні та
МДН-і
б
а
нтегральні
схеми. Такі схеми складають основу
сучасної
Рис.6.1. Елементи напівпровідникової ІМС: а – структура електричної схеми, яка сформована за допомогою напівпровідникової технології; б – фрагмент електричної схеми. Виводи: 1- конденсатора; 2- бази; 3- емітера; 4- колектора; 5- резистора.
Перевагами напівпровідникових ІМС є більш висока надійність (менше число контактних з’єднань), більша механічна міцність, що зумовлена меншими розмірами елементів (приблизно на порядок), менша собівартість завдяки ефективному використанню переваг групової технології.
Напівпровідникові IMC (особливо цифрові) з БТ вирізняються високою швидкодією, а з МДН-транзисторами – високою щільністю упакування, мінімальною потужністю споживання та низькою вартістю виготовлення. Аналогові ІМС з ПТ мають великий вхідний опір (більше 109 Ом).
Виробництво напівпровідникових IMC вимагає особливих виробничих приміщень, складного обладнання, строгого виконання технологічних операцій. Тому виготовлення таких ІМС стає економічно доцільним лише при масовому виробництві (мільйони штук в рік на одному комплекті обладнання). Через це за напівпровідниковою технологією виготовляють цифрові ІМС та IMC для реалізації стандартних аналогових функцій, а також високонадійні мікросхеми для побудови радіоелектронної апаратури з найвищою щільністю упакування.
Плівкова ІМС - це мікросхема, елементи та міжелементні з’єднання якої виконано за допомогою плівок необхідної форми з різними електрофізичними властивостями на поверхні діелектричної підкладки або діелектричної плівки. Залежно від способу формування плівок і відповідно їхніх товщин розрізняють тонкоплівкові ІМС (товщина плівок 1...2 мкм) та товстоплівкові ІМС (товщина плівок 10...20 мкм і більше). Плівкова технологія не дозволяє одержувати активні елементи із задовільними параметрами. Суто плівкові схеми є пасивними IMC (зазвичай - це переважно резистивні подільники напруги, набір резисторів та конденсаторів, резистивно-емнісні схеми). Плівкові інтегральні елементи найбільш часто використовують разом з мініатюрними дискретними електро-радіоелементами - компонентами.
Тонкоплівкові ІМС мають ряд переваг перед товстоплівковими: без пригонки можна одержати більш вузькі допуски на номінали елементів (резисторів і конденсаторів), досягається більш висока щільність упакування елементів на підкладці.
У дуже складних аналогових схемах з малими допусками на номінали елементів, де необхідна надвисока стабільність резисторів, переважно використовують тонкоплівкові ІМС. Слід зауважити, що при обмеженій кількості виготовлення плівкових IMC недоцільно налагождувати їх виробництво, яке потребує великих капітальних затрат. У цьому випадку перевагу віддають товстоплівковій технології.
Товстоплівкова технологія має такі переваги перед тонкоплівковими: меншу вартість при розробці та виготовлені в дрібносерійному виробництві, потребує значно менших капітальних затрат при організації виробництва (простіше обладнання, менш жорсткі вимоги до виробничих приміщень), забезпечує більшу механічну міцність, високу волого-, корозійну та теплову стійкість, а також менші паразитні ємності та взаємовплив елементів.
Гібридною ІМС називають ІМС, яка має діелектричну основу, пасивні елементи (R, С, L) на її поверхні формують у вигляді одношарових або багатошарових плівкових структур, з’єднаних нерозривними плівковими провідниками, а напівпровідникові прилади (активні елементи), в тому числі безкорпусні ІМС (кристали) та інші компоненти (мініатюрні конденсатори, резистори й індуктивності великих номіналів) розміщені на основі у вигляді дискретних навісних деталей. Структуру такої ІМС, що відповідає фрагменту електронної схеми (рис. 6.1, б), показано на рис. 6.2. До гібридних належать також мікросхеми, які складаються з кількох кристалів, з’єднаних між собою і змонтованих в одному корпусі (багатокристальні ІМС).
Рис. 6.2. Структура гібридної ІМС
Гібридні ІМС поступаються напівпровідниковим за надійністю, щільністю упакування та собівартістю, але мають в ряді випадків особливі схемотехнічні переваги завдяки широкій номенклатурі навісних компонентів (транзисторів, мікроіндуктивностей, конденсаторів великої ємності та ін.).
Гібридна технологія дуже гнучка. Вона дозволяє порівняно швидко створювати електронні пристої, що виконують досить складні функції. Комплект обладнання для виготовлення гібридних ІМС дешевше, ніж для виготовлення напівпровідникових ІМС, а сам технологічний процес набагато простіший, тому освоєння гібридної технології посильне практично для будь-якого радіоелектронного підприємства.
Перевагою гібридної технології є також більш високий відсоток виходу придатних ІМС (60...80 % порівняно з 5...30% для напівпровідникових). Завдяки малим паразитним ємностям та надійну ізоляцію між елементами і компонентами гібридна IMC має кращі електричні властивості. За такі схеми найчастіше створюють аналогову апаратуру, в якій використовують конденсатори великої ємності, високоомні, високостабільні або прецизійнірезистори.
У суміщених ІМС активні елементи виконані в поверхневому шарі напівпровідникового кристала (як в напівпровідниковій ІМС), а пасивні нанесені за допомогою плівок на попередньо ізольовану
поверхню того ж кристалу (рис. 7.1, б і рис. 7.3). Таку технологію використовують для створення ІМС з високими номіналами і високою стабільністю опорів та ємностей, що легше забезпечити плівковими елементами, ніж напівпровідниками.
Рис. 6.3. Структура суміщеної ІМС
При виготовлені всіх типів ІМС міжз’єднання елементів виконують за допомогою тонких металевих смужок, які напиляються або наносяться на поверхню підклади і в потрібних місцях контактують з елементами. Процес нанесення цих з’єднувальних смужок називають металізацією, а сам “рисунок” міжз’єднань – металевою розведенням.
За характером виконуваних функцій ІМС поділяють на дві категорії: аналогові та цифрові.
Аналогові ІМС (АІС) виконують функції перетворення та обробки електричних сигналів, які змінюються за законом неперервної функції. Їх застосовують як підсилювачі, генератори гармонічних сигналів, детектори, стабілізатори напруги, фільтри тощо.
Цифрові ІМС ( ЦІС) (призначені для обробки та перетворення електричних сигналів, що змінюються за законом дискретної функції. Активні елементи в таких ІМС працюють у ключовому режимі і забезпечують два стани схем: “Відкрито” і “Закрито” (насичення та відсікання, логічний 0, логічна 1).
Кількісно рівень розвитку інтегральної техніки та складності ІМС визначають показником, який називається ступенем інтеграції (К). Він враховує сумарне число елементів і компонентів N, які знаходяться в ІМС і визначається за формулою К = lgN. При цьому ІМС із числом елементів близько 10 - це мікросхеми першого ступеня інтеграції, із числом від 11...100 – другого ступеня, з числом елементів 101...1000, 1001...10000, 10001...100000 – мікросхеми третього, четвертого і п’ятого ступенів інтеграції відповідно. При обчисленні К його заокруглюють до найближчого більшого цілого числа.
Широко вживають також терміни: мала інтегральна схема (МІС), середня (СІС), велика (ВІС), надвелика (НВІС).
Мала інтегральна схема має до 100 елементів включно. До СІС належать цифрові ІМС із число елементів 101 ... 1000 включно і аналогові ІМС із числом елементів 101...500 включно.
Велика інтегральна схема має 1000...10000 елементів включно для цифрових ІМС з регулярною структурою побудови, 500... 50000 елементів включно – для цифрових ІМС з нерегулярною структурою побудови, та 500 ...1000 включно – для аналогових ІМС.
До цифрових ІМС з регулярною структурою побудови відносять схеми запам’ятовувачів та схеми на основі базових матричних кристалів, а до цифрових ІМС з нерегулярною структурою побудови – схеми обчислювачів.
До НВІС належать: цифрові ІМС з регулярною структурою із числом елементів понад 100000, ЦІС з нерегулярною структурою із числом елементів понад 50000 та аналогові ІМС із числом елементів понад 10000.
Більшість аналогових ІМС відносяться до МІС та СІС, але виготовляють гібридні ВІС, а також надвеликі гібридні інтегральні схеми.
Цифрові ІМС, які містять логічні елементи, тригери і прості цифрові пристрої, являють собою малі та середні мікросхеми, а складні обчислювальні комплекти (мікропроцесори) та запам’ятовувальні пристрої - великі та надвеликі ІМС.
Досягнення мініатюризації ІМС оцінюють за щільністю упакування. Її визначають відношенням сумарної кількості елементів ІМС та (чи) елементів, які є в складі компонентів, до об’єму ІМС.
