- •Основи електроніки навчальний посібник на базі програми схемотехнічного моделювання «multisim»
- •2.12. Поточний самоконтроль 83
- •2.10.1. Тестові контрольні запитання 83
- •3.7 Поточний самоконтроль 117
- •4.13. Поточний самоконтроль 166
- •5.10. Поточний самоконтроль 195
- •6.7. Поточний самоконтроль 230
- •7.5. Поточний самоконтроль 264
- •Передмова
- •Частина 1. Базові визначення, параметри та характеристики Розділ 1. Електричні інформаційні сигнали та типові системи їх обробки.
- •1.1. Узагальнена структура інформаційних систем
- •1.2 Компоненти радіоелектронної апаратури
- •1.2.1 Класифікація
- •1.2.2. Пасивні компоненти
- •1.2.3. Активні компоненти – електронні прилади
- •1.3. Типові процеси обробки еіс
- •1.4 Аналіз електронних пристроїв за постійним струмом, в частотній та часовій областях
- •1.5 Відносні та логарифмічні коефіцієнти підсилення
- •1.6.1 Класифікація
- •1.6.2 Подільники напруги
- •1.6.3. Генератори напруги та струму
- •1.6.5. Дослідження диференціюючих rc-схем
- •1.6.6. Дослідження інтегруючих rc-схем
- •1.7. Типові електронні інформаційні системи
- •1.7.1. Електроніка та радіотехніка
- •1.7.2. Вимірювальна система
- •1.7.3. Аналогові та цифрові системи
- •1.8.1. Основні постулати радіоелектроніки
- •1.8.2. Наноелектроніка
- •1.9. Поточний самоконтроль
- •1.9.1. Завдання для дослідження схем в ms
- •1.9.2. Тестові контрольні запитання
- •Частина іі. Активні компоненти реа Розділ 2. Електронно-дірковий перехід – напівпровідникова базова структура твердотілих компонентів реа
- •2.1. Класифікація речовин за провідністю
- •2.2. Дрейфовий та дифузійний струми власних напівпровідників
- •2.3 Домішкові напівпровідники
- •2.4. Визначення та класифікація електричних переходів
- •2.5. Електронно-дірковий перехід в стані рівноваги
- •2.6. Пряме та зворотне вмикання едп
- •2.7. Вольт-амперна характеристика ідеалізованого едп
- •2.8. Ємнісні властивості p-n переходу
- •2.9. Пробій p-n переходу
- •2.10. Перехід метал-напівпровідник
- •2.11. Особливості р-n переходів та їх використання для побудови різноманітних компонентів електронної апаратури
- •2.12. Поточний самоконтроль
- •2.10.1. Тестові контрольні запитання
- •Розділ 3. Напівпровідникові діоди та їх використання
- •3.1. Визначення, структура та класифікація
- •3.2. Вольт-амперна характеристика
- •3.3. Параметри нд
- •3.4. Модель та частотні властивості нд
- •3.5. Основні види пробою нд
- •3.6.Типові функціональні пристрої
- •3.6.1. Випрямлячі
- •3.6.3. Імпульсні діоди
- •3.6.4. Напівпровідникові стабілітрони. Параметричні стабілізатори напруги
- •3.6.5. Обмежувачі амплітуди
- •3.6.6. Варикапи та їх використання
- •3.6.7. Діоди Шотткі
- •3.7 Поточний самоконтроль
- •3.7.2 Контрольні запитання
- •Розділ 4. Біполярні транзистори
- •4.1. Структури, режими та схеми вмикання
- •4.2.Фізичні процеси в бт
- •Повний струм колектора
- •4.3. Статичні характеристики бт
- •4.3.1. Статичні характеристики бт із се
- •4.3.2. Статичні характеристики бт із сб
- •4.4. Температурний дрейф характеристик бт
- •4.5. Підсилення за допомогою бт
- •4.6. Графоаналітичний метод аналізу та розрахунку транзисторних схем
- •Коефіцієнт підсилення за струмом:
- •4.7. Динамічні властивості біполярних транзисторів
- •4.8. Ключовий режим бт
- •4.9. Порівняльний аналіз трьох схем вмикання бт
- •4.10. Власні шуми та шумові параметри транзисторів
- •4.11. Температурний режим та пробій бт
- •4.12. Основні типи біполярних транзисторів
- •4.13. Поточний самоконтроль
- •5. Польові транзистори
- •5.1. Типи польових транзисторів
- •5.2. Польовий транзистор з керувальним p-n‑переходом
- •5.4. Польові транзистори з ізольованими затворами
- •5.6. Ключовий режим мдн-транзистора
- •5.7. Температурні залежності та шуми польових транзисторів
- •5.8. Класифікація та особливості використання польових транзисторів
- •5.9. Порівняння польових та біполярних транзисторів
- •5.10. Поточний самоконтроль
- •5.10.2.Контрольні запитання
- •Розділ 6. Інтегральні мікросхеми
- •6.1. Особливості імс як активних компонентів
- •6.2. Класифікація інтегральних мікросхем
- •6.3.Аналогові інтегральні мікросхеми
- •6.3.1. Основні типи аіс
- •6.3.2. Схеми стабілізації режиму роботи каскаду підсилення.
- •6.3.3. Схеми зсуву рівнів напруг
- •6.4.Однокаскадні багатоцільові підсилювачі
- •6.5.Диференціальні підсилювачі
- •6.6. Операційні підсилювачі
- •6.6.1. Особливості оп
- •Р ис. 6.8. Принципова схема оп
- •6. 6. 2. Інвертувальна схема вмикання оп
- •Напругу на виході визначають напругою на конденсаторі:
- •6.6.4. Імпульсний режим оп
- •6.7. Поточний самоконтроль
- •6.7.2. Контрольні запитання
- •Розділ 7. Оптоелектронні напівпровідникові прилади
- •7.1. Особливості оптоелектроніки
- •7.2. Джерела оптичного випромінювання
- •7.2.1.Люмінесценція
- •7.2.2. Електролюмінесцентні індикатори
- •7.2.3. Випромінювальні діоди
- •7.3. Фотоелектричні напівпровідникові приймачі випромінювання
- •7.3.1. Внутрішній фотоефект
- •7.3.3. Фотодіоди
- •7.3.4. Фототранзистори
- •7.4. Оптрони та оптоелектронні імс
- •7.5. Поточний самоконтроль
- •7.5.1. Завдання для моделювання та дослідження схем в середовищі ms
- •Дослідити формування вихідних сигналів при надходженні інформаційних сигналів від двох джерел.
- •7.5.2.Контрольні запитання
- •Частина ш. Функціональні пристрої реа
- •8.1. Визначення, структурні схеми та класифікація підсилювачів
- •8.2. Основні характеристики та параметри еп
- •Для багато каскадного підсилювача
- •8.3. Підсилювачі з резистивно-ємнісним зв`язком
- •8.3.1. Особливості підсилювачів з резистивно-ємнісним зв`язком
- •8.3.2. Дослідження в частотній області.
5.9. Порівняння польових та біполярних транзисторів
Біполярні та польові транзистори виконують однакові функції: підсилюють потужність (реалізують принцип реле) в лінійних та ключових схемах. Це відбувається за рахунок майже безінерційного керування опором транзисторів в електричному колі, що вмикається у зовнішнє джерело живлення. Водночас слід виділити ряд важливих властивостей ПТ і БТ, які ґрунтуються на різних фізичних процесах, що використовуються для побудови приладів, на різних принципах керування приладами та особливостях експлуатації. Узагальнююче порівняння цих двох типів транзисторів показано у табл. (5.1)
Наведені в табл. (5.1) порівняння показують, що в дискретних електронних пристроях МДН-транзистори мають перевагу перед біполярними, а саме:
– вхідне (керувальне) коло ПТ споживає дуже мало енергії, оскільки вхідний опір цих приладів досягає значення близько 1017Ом; підсилення потужності та струму МДН-транзисторами набагато більше, ніж БТ;
– завдяки тому, що керувальне коло ізольоване від вихідного, значно підвищується надійність роботи і завадостійкість схем на МДН-транзисторах;
– МДН-транзистори мають низький рівень власних шумів, оскільки немає інжекції та властивих їй флуктуацій;
– ПТ мають більш високу власну швидкодію, оскільки в них немає інерційних процесів накопичування і розосередження носіїв зарядів.
Потужні МДН-транзистори все більше витісняють БТ у пристроях з високою швидкодією та підвищеною надійністю роботи.
Слід також виділити ряд недоліків, властивих МДН-транзисторам. Через відносно великий опір каналу у відкритому стані спад напруги на відкритому МДН-транзисторі (залишкова напруга) помітно більший, ніж спад напруги на БТ у режимі насичення. Крім того, ПТ мають істотно менше значення межової температури структури, яка дорівнює 150 °C (для кремнієвих БТ – 200 °C). Це обмежує використання ПТ у середовищах з температурою понад 100 °C.
Таблиця 5.1. Порівняння біполярних та польових транзисторів
БТ |
ПТ |
Керуються струмом. Керування опором транзистора, тобто вихідним струмом, відбувається змінюванням вхідного струму |
Керуються напругою. Керування вихідним струмом відбувається за допомогою зміни вхідної напруги або електричного поля |
Вхідний опір малий, оскільки вхідним колом є р-п перехід, зміщений у прямому напрямі |
Вхідний опір дуже великий, оскільки вхідне коло ізольоване діелектриком або зворотно зміщеним р-п‑переходом |
Вихідний струм формується основними та неосновними носіями зарядів (зарядами двох знаків), звідки і назва «біполярний транзистор» |
Вхідний струм формується носіями одного знака (або електронами, або дірками), звідки і назва «уніполярний транзистор» |
Відносно невеликий коефіцієнт підсилення за струмом |
Дуже великий коефіцієнт підсилення за струмом |
Потребують спеціальний заходів щодо підвищення завадостійкості |
Висока завадостійкість пристроїв з такими приладами |
Низька теплостійкість: зі збільшенням струму підвищується температура структури, що викликає подальше збільшення струму |
Висока теплостійкість; зростання температури призводить до збільшення опору, струм зменшується |
Висока ймовірність саморозігрівання та вторинного пробою, що звужує область безпечної роботи |
Мала ймовірність теплового саморозігрівання та вторинного пробою, що розширює область безпечної роботи |
Висока чутливість до перенавантажень струму |
Низька чутливість до перенавантажень струму |
Для паралельного вмикання необхідні додаткові заходи щодо вирівнювання струмів |
У разі паралельного вмикання струми розподіляються рівномірно без додаткових заходів |
Процеси рекомбінації носіїв у р-п‑переході та базі і регенераційно-комбінаційні процеси зумовлюють низькочастотні шуми |
Малий рівень шумів, особливо на низьких частотах |
Виготовлення ІМС потребують спеціальних методів і технологічних процесів для ізоляції біполярних структур |
Під час виготовлення ІМС на базі МДН-струкур ізоляція елементів створюється без додаткових технологічних процесів |
