- •Основи електроніки навчальний посібник на базі програми схемотехнічного моделювання «multisim»
- •2.12. Поточний самоконтроль 83
- •2.10.1. Тестові контрольні запитання 83
- •3.7 Поточний самоконтроль 117
- •4.13. Поточний самоконтроль 166
- •5.10. Поточний самоконтроль 195
- •6.7. Поточний самоконтроль 230
- •7.5. Поточний самоконтроль 264
- •Передмова
- •Частина 1. Базові визначення, параметри та характеристики Розділ 1. Електричні інформаційні сигнали та типові системи їх обробки.
- •1.1. Узагальнена структура інформаційних систем
- •1.2 Компоненти радіоелектронної апаратури
- •1.2.1 Класифікація
- •1.2.2. Пасивні компоненти
- •1.2.3. Активні компоненти – електронні прилади
- •1.3. Типові процеси обробки еіс
- •1.4 Аналіз електронних пристроїв за постійним струмом, в частотній та часовій областях
- •1.5 Відносні та логарифмічні коефіцієнти підсилення
- •1.6.1 Класифікація
- •1.6.2 Подільники напруги
- •1.6.3. Генератори напруги та струму
- •1.6.5. Дослідження диференціюючих rc-схем
- •1.6.6. Дослідження інтегруючих rc-схем
- •1.7. Типові електронні інформаційні системи
- •1.7.1. Електроніка та радіотехніка
- •1.7.2. Вимірювальна система
- •1.7.3. Аналогові та цифрові системи
- •1.8.1. Основні постулати радіоелектроніки
- •1.8.2. Наноелектроніка
- •1.9. Поточний самоконтроль
- •1.9.1. Завдання для дослідження схем в ms
- •1.9.2. Тестові контрольні запитання
- •Частина іі. Активні компоненти реа Розділ 2. Електронно-дірковий перехід – напівпровідникова базова структура твердотілих компонентів реа
- •2.1. Класифікація речовин за провідністю
- •2.2. Дрейфовий та дифузійний струми власних напівпровідників
- •2.3 Домішкові напівпровідники
- •2.4. Визначення та класифікація електричних переходів
- •2.5. Електронно-дірковий перехід в стані рівноваги
- •2.6. Пряме та зворотне вмикання едп
- •2.7. Вольт-амперна характеристика ідеалізованого едп
- •2.8. Ємнісні властивості p-n переходу
- •2.9. Пробій p-n переходу
- •2.10. Перехід метал-напівпровідник
- •2.11. Особливості р-n переходів та їх використання для побудови різноманітних компонентів електронної апаратури
- •2.12. Поточний самоконтроль
- •2.10.1. Тестові контрольні запитання
- •Розділ 3. Напівпровідникові діоди та їх використання
- •3.1. Визначення, структура та класифікація
- •3.2. Вольт-амперна характеристика
- •3.3. Параметри нд
- •3.4. Модель та частотні властивості нд
- •3.5. Основні види пробою нд
- •3.6.Типові функціональні пристрої
- •3.6.1. Випрямлячі
- •3.6.3. Імпульсні діоди
- •3.6.4. Напівпровідникові стабілітрони. Параметричні стабілізатори напруги
- •3.6.5. Обмежувачі амплітуди
- •3.6.6. Варикапи та їх використання
- •3.6.7. Діоди Шотткі
- •3.7 Поточний самоконтроль
- •3.7.2 Контрольні запитання
- •Розділ 4. Біполярні транзистори
- •4.1. Структури, режими та схеми вмикання
- •4.2.Фізичні процеси в бт
- •Повний струм колектора
- •4.3. Статичні характеристики бт
- •4.3.1. Статичні характеристики бт із се
- •4.3.2. Статичні характеристики бт із сб
- •4.4. Температурний дрейф характеристик бт
- •4.5. Підсилення за допомогою бт
- •4.6. Графоаналітичний метод аналізу та розрахунку транзисторних схем
- •Коефіцієнт підсилення за струмом:
- •4.7. Динамічні властивості біполярних транзисторів
- •4.8. Ключовий режим бт
- •4.9. Порівняльний аналіз трьох схем вмикання бт
- •4.10. Власні шуми та шумові параметри транзисторів
- •4.11. Температурний режим та пробій бт
- •4.12. Основні типи біполярних транзисторів
- •4.13. Поточний самоконтроль
- •5. Польові транзистори
- •5.1. Типи польових транзисторів
- •5.2. Польовий транзистор з керувальним p-n‑переходом
- •5.4. Польові транзистори з ізольованими затворами
- •5.6. Ключовий режим мдн-транзистора
- •5.7. Температурні залежності та шуми польових транзисторів
- •5.8. Класифікація та особливості використання польових транзисторів
- •5.9. Порівняння польових та біполярних транзисторів
- •5.10. Поточний самоконтроль
- •5.10.2.Контрольні запитання
- •Розділ 6. Інтегральні мікросхеми
- •6.1. Особливості імс як активних компонентів
- •6.2. Класифікація інтегральних мікросхем
- •6.3.Аналогові інтегральні мікросхеми
- •6.3.1. Основні типи аіс
- •6.3.2. Схеми стабілізації режиму роботи каскаду підсилення.
- •6.3.3. Схеми зсуву рівнів напруг
- •6.4.Однокаскадні багатоцільові підсилювачі
- •6.5.Диференціальні підсилювачі
- •6.6. Операційні підсилювачі
- •6.6.1. Особливості оп
- •Р ис. 6.8. Принципова схема оп
- •6. 6. 2. Інвертувальна схема вмикання оп
- •Напругу на виході визначають напругою на конденсаторі:
- •6.6.4. Імпульсний режим оп
- •6.7. Поточний самоконтроль
- •6.7.2. Контрольні запитання
- •Розділ 7. Оптоелектронні напівпровідникові прилади
- •7.1. Особливості оптоелектроніки
- •7.2. Джерела оптичного випромінювання
- •7.2.1.Люмінесценція
- •7.2.2. Електролюмінесцентні індикатори
- •7.2.3. Випромінювальні діоди
- •7.3. Фотоелектричні напівпровідникові приймачі випромінювання
- •7.3.1. Внутрішній фотоефект
- •7.3.3. Фотодіоди
- •7.3.4. Фототранзистори
- •7.4. Оптрони та оптоелектронні імс
- •7.5. Поточний самоконтроль
- •7.5.1. Завдання для моделювання та дослідження схем в середовищі ms
- •Дослідити формування вихідних сигналів при надходженні інформаційних сигналів від двох джерел.
- •7.5.2.Контрольні запитання
- •Частина ш. Функціональні пристрої реа
- •8.1. Визначення, структурні схеми та класифікація підсилювачів
- •8.2. Основні характеристики та параметри еп
- •Для багато каскадного підсилювача
- •8.3. Підсилювачі з резистивно-ємнісним зв`язком
- •8.3.1. Особливості підсилювачів з резистивно-ємнісним зв`язком
- •8.3.2. Дослідження в частотній області.
Частина 1. Базові визначення, параметри та характеристики Розділ 1. Електричні інформаційні сигнали та типові системи їх обробки.
1.1. Узагальнена структура інформаційних систем
Наукові, експериментальні дослідження, а також управління технологічними процесами реалізуються шляхом виявлення та ідентифікації різноманітних фізичних процесів, явищ або фіксації станів об`єктів. При цьому виділяються та фіксуються лише ті фізичні величини, значення яких або ж їх зміна в часі містять інформацію, тобто забезпечують формування нових знань в результаті експериментів чи фіксують параметри технологічних процесів та їх зміну. Таким чином формується сукупність інформаційних сигналів.
Найбільш досконалими та поширеними являються інформаційно-вимірювальні системи (ІВС), побудовані на базі електронних пристроїв та комплексів обробки наукової та технологічної інформації. Сюди відносяться як найпростіші електронні мультиметри, аналогові та цифрові осцилографи, так і багатофункціональні комп`ютеризовані комплекси з досконалими програмними забезпеченнями. При цьому фізичні параметри різноманітних процесів фіксуються відповідними електричними параметрами, що дозволяє отримувати необхідну інформацію, тобто – відомості, які визначають знання щодо процесів чи об’єктів дослідження. Перехід до електричних інформаційних сигналів (ЕІС) дозволяє відносно просто, в мінімальних фізичних об’ємах, за високої швидкодії та надійності функціонування реалізувати необхідний алгоритм обробки інформації в системах виміру, контролю та керування процесами і явищами. В структурній схемі ІВС можна виділити три складові: 1) датчики; 2) багатокаскадні електронні системи передачі та обробки інформації; 3) кінцеві електронні пристрої фіксації або відображення інформації.
Датчик – це первинний перетворювач фізичної величини, який перетворює реальний стан процесу чи об’єкта у відповідний параметр електричного сигналу. Під дією фізичної вимірювальної величини датчик видає (формує) еквівалентний (адекватний) електричний інформаційний сигнал шляхом зміни струму, напруги, заряду, ємності, імпедансу (рис. 1.1).
Я
к
приклад на рис.1.2 показано формування
ЕІС за допомогою електронного перетворювача
температура - електрична напруга.
Рис. 1.1. Формування ЕІС. Рис. 1.2. Датчик температури.
Багатокаскадна електронна система підсилює та перетворює ЕІС у відповідності із заданим алгоритмом. Такі системи пройшли шлях від найпростіших електричних телеграфів з кодуванням інформації за допомогою абетки Морзе (крапка, тире, і таке інше) до сучасної Всесвітньої комп’ютерної мережі Internet.
Системою обробки сигналів називається сукупність сполучених між собою компонентів і приладів, яка може приймати вхідний сигнал (або групу вхідних сигналів), впливати на сигнали певним чином для одержання інформації або поліпшення її якості і представляти інформацію на виході у відповідній формі і в необхідний час. В сучасній радіоелектронній апаратурі (РЕА) використовуються методи та пристрої обробки як аналогової так і цифрової інформації.
Кінцеві електронні інформаційні пристрої призначаються для оперативного подання або відображення інформації у вигляді найбільш відповідному для оптимального сприймання оператором, автоматичного документування або керування технологічними процесами.
Електричні інформаційні сигнали, які формуються датчиками, є зазвичай малопотужними. Для забезпечення оптимального функціонування кінцевих пристроїв потужність цих сигналів повинна значно збільшитись. Для цього використовують багатокаскадні підсилювачі та різноманітні перетворювачі.
Відбір сигналів на виході системи може бути здійснений в різних формах залежно від того, як використовуватиметься інформація, що міститься у вхідних сигналах. Можна відображати інформацію чи в аналоговій формі (використовуючи, наприклад, прилад, в якому положення стрілки фіксує величину змінної, що цікавить нас), чи в цифровій формі, використовуючи елементи, прилади чи систему цифрової індикації.
В радіоприймачах вихідні потужні електричні сигнали перетворюються в звукову енергію за допомогою гучномовців.
Для відображення інформації використовують точкові індикатори (світловоди), табло, дисплеї, растрові панелі та великі телевізійні екрани. Для налагодження та дослідження радіоелектронної апаратури, як кінцеві пристрої широко використовують осцилографи (зокрема цифрові), аналізатори, частотоміри та ін.
На всіх описаних етапах створення та передачі ЕІС процеси відбуваються за рахунок керування електронними потоками, для чого використовують електричні та електронні схеми. Безліч функціональних блоків та інформаційних комплексів створюються на базі електрично-з`єднаних між собою пасивних та активних компонентів.
