- •Основи електроніки навчальний посібник на базі програми схемотехнічного моделювання «multisim»
- •2.12. Поточний самоконтроль 83
- •2.10.1. Тестові контрольні запитання 83
- •3.7 Поточний самоконтроль 117
- •4.13. Поточний самоконтроль 166
- •5.10. Поточний самоконтроль 195
- •6.7. Поточний самоконтроль 230
- •7.5. Поточний самоконтроль 264
- •Передмова
- •Частина 1. Базові визначення, параметри та характеристики Розділ 1. Електричні інформаційні сигнали та типові системи їх обробки.
- •1.1. Узагальнена структура інформаційних систем
- •1.2 Компоненти радіоелектронної апаратури
- •1.2.1 Класифікація
- •1.2.2. Пасивні компоненти
- •1.2.3. Активні компоненти – електронні прилади
- •1.3. Типові процеси обробки еіс
- •1.4 Аналіз електронних пристроїв за постійним струмом, в частотній та часовій областях
- •1.5 Відносні та логарифмічні коефіцієнти підсилення
- •1.6.1 Класифікація
- •1.6.2 Подільники напруги
- •1.6.3. Генератори напруги та струму
- •1.6.5. Дослідження диференціюючих rc-схем
- •1.6.6. Дослідження інтегруючих rc-схем
- •1.7. Типові електронні інформаційні системи
- •1.7.1. Електроніка та радіотехніка
- •1.7.2. Вимірювальна система
- •1.7.3. Аналогові та цифрові системи
- •1.8.1. Основні постулати радіоелектроніки
- •1.8.2. Наноелектроніка
- •1.9. Поточний самоконтроль
- •1.9.1. Завдання для дослідження схем в ms
- •1.9.2. Тестові контрольні запитання
- •Частина іі. Активні компоненти реа Розділ 2. Електронно-дірковий перехід – напівпровідникова базова структура твердотілих компонентів реа
- •2.1. Класифікація речовин за провідністю
- •2.2. Дрейфовий та дифузійний струми власних напівпровідників
- •2.3 Домішкові напівпровідники
- •2.4. Визначення та класифікація електричних переходів
- •2.5. Електронно-дірковий перехід в стані рівноваги
- •2.6. Пряме та зворотне вмикання едп
- •2.7. Вольт-амперна характеристика ідеалізованого едп
- •2.8. Ємнісні властивості p-n переходу
- •2.9. Пробій p-n переходу
- •2.10. Перехід метал-напівпровідник
- •2.11. Особливості р-n переходів та їх використання для побудови різноманітних компонентів електронної апаратури
- •2.12. Поточний самоконтроль
- •2.10.1. Тестові контрольні запитання
- •Розділ 3. Напівпровідникові діоди та їх використання
- •3.1. Визначення, структура та класифікація
- •3.2. Вольт-амперна характеристика
- •3.3. Параметри нд
- •3.4. Модель та частотні властивості нд
- •3.5. Основні види пробою нд
- •3.6.Типові функціональні пристрої
- •3.6.1. Випрямлячі
- •3.6.3. Імпульсні діоди
- •3.6.4. Напівпровідникові стабілітрони. Параметричні стабілізатори напруги
- •3.6.5. Обмежувачі амплітуди
- •3.6.6. Варикапи та їх використання
- •3.6.7. Діоди Шотткі
- •3.7 Поточний самоконтроль
- •3.7.2 Контрольні запитання
- •Розділ 4. Біполярні транзистори
- •4.1. Структури, режими та схеми вмикання
- •4.2.Фізичні процеси в бт
- •Повний струм колектора
- •4.3. Статичні характеристики бт
- •4.3.1. Статичні характеристики бт із се
- •4.3.2. Статичні характеристики бт із сб
- •4.4. Температурний дрейф характеристик бт
- •4.5. Підсилення за допомогою бт
- •4.6. Графоаналітичний метод аналізу та розрахунку транзисторних схем
- •Коефіцієнт підсилення за струмом:
- •4.7. Динамічні властивості біполярних транзисторів
- •4.8. Ключовий режим бт
- •4.9. Порівняльний аналіз трьох схем вмикання бт
- •4.10. Власні шуми та шумові параметри транзисторів
- •4.11. Температурний режим та пробій бт
- •4.12. Основні типи біполярних транзисторів
- •4.13. Поточний самоконтроль
- •5. Польові транзистори
- •5.1. Типи польових транзисторів
- •5.2. Польовий транзистор з керувальним p-n‑переходом
- •5.4. Польові транзистори з ізольованими затворами
- •5.6. Ключовий режим мдн-транзистора
- •5.7. Температурні залежності та шуми польових транзисторів
- •5.8. Класифікація та особливості використання польових транзисторів
- •5.9. Порівняння польових та біполярних транзисторів
- •5.10. Поточний самоконтроль
- •5.10.2.Контрольні запитання
- •Розділ 6. Інтегральні мікросхеми
- •6.1. Особливості імс як активних компонентів
- •6.2. Класифікація інтегральних мікросхем
- •6.3.Аналогові інтегральні мікросхеми
- •6.3.1. Основні типи аіс
- •6.3.2. Схеми стабілізації режиму роботи каскаду підсилення.
- •6.3.3. Схеми зсуву рівнів напруг
- •6.4.Однокаскадні багатоцільові підсилювачі
- •6.5.Диференціальні підсилювачі
- •6.6. Операційні підсилювачі
- •6.6.1. Особливості оп
- •Р ис. 6.8. Принципова схема оп
- •6. 6. 2. Інвертувальна схема вмикання оп
- •Напругу на виході визначають напругою на конденсаторі:
- •6.6.4. Імпульсний режим оп
- •6.7. Поточний самоконтроль
- •6.7.2. Контрольні запитання
- •Розділ 7. Оптоелектронні напівпровідникові прилади
- •7.1. Особливості оптоелектроніки
- •7.2. Джерела оптичного випромінювання
- •7.2.1.Люмінесценція
- •7.2.2. Електролюмінесцентні індикатори
- •7.2.3. Випромінювальні діоди
- •7.3. Фотоелектричні напівпровідникові приймачі випромінювання
- •7.3.1. Внутрішній фотоефект
- •7.3.3. Фотодіоди
- •7.3.4. Фототранзистори
- •7.4. Оптрони та оптоелектронні імс
- •7.5. Поточний самоконтроль
- •7.5.1. Завдання для моделювання та дослідження схем в середовищі ms
- •Дослідити формування вихідних сигналів при надходженні інформаційних сигналів від двох джерел.
- •7.5.2.Контрольні запитання
- •Частина ш. Функціональні пристрої реа
- •8.1. Визначення, структурні схеми та класифікація підсилювачів
- •8.2. Основні характеристики та параметри еп
- •Для багато каскадного підсилювача
- •8.3. Підсилювачі з резистивно-ємнісним зв`язком
- •8.3.1. Особливості підсилювачів з резистивно-ємнісним зв`язком
- •8.3.2. Дослідження в частотній області.
4.2.Фізичні процеси в бт
Для розуміння принципу дії БТ як керуючого елемента необхідно скористатися аналізом процесів у р-n переході. Розглянемо фізичні процеси, які пробігають в БТ типу n-p-n в активному режимі при його вмиканні за схемою із СБ (рис. 4.3). Емітерний перехід зміщений в прямому напрямі, а колекторний – у зворотному. Внаслідок процесу інжекції з емітера в базу поступає великий потік електронів.
Рис.
4.3. Потоки електронів в транзисторі
типу n-p-n
за схемою СБ в активному режимі
Концентрація домішок у базі значно менша, ніж в емітері (емітерний перехід - несиметричний), а тому потоком основних носіїв заряду з бази в емітер можна знехтувати. У базі біля емітерного переходу накопичується велика кількість носіїв заряду (у даному випадку - електронів), біля колекторного переходу їх майже немає. Так формується великий градієнт концентрації неосновних носіїв у базовій ділянці. Внаслідок теплового руху в базі створюється дифузійний потік неосновних носіїв від емітерного переходу, де їх надлишок, до колекторного переходу і далі в колектор. Електричне поле об'ємного заряду колекторного переходу сприяє переміщенню (екстракції) електронів через цей перехід і вони попадають у прискорювальне поле зовнішнього джерела живлення.
Майже всі електрони, що інжектували в базу, досягають колектора. Це стає можливим тільки за умови досить малої товщини бази та невеликої концентрації дірок в ній. Лише незначна частина електронів рекомбінує в базі з дірками, що викликає струм бази ІВ. Цей струм є небажаним і навіть шкідливим.
Таким чином, в електричному колі колектора формується струм колектора IС, значення якого пропорційне емітерному струму ІE:
ІС`=IЕ (4.1)
Коефіцієнт пропорційності називається коефіцієнтом передачі струму емітера. Якщо база досить тонка, втрата електронів внаслідок рекомбінації їх в базі мала, коефіцієнт передачі струму може досягати значення 0,99 і більше.
Згідно з першим законом Кірхгофа між струмами електродів БТ завжди справедливе співвідношення:
ІЕ=ІВ+ІС. (4.2)
Отже, в електронних схемах з БТ вхідний інформаційний сигнал, будучи прямою напругою емітерного переходу, керує струмами емітера і колектора , а відтак - опором колекторного перехо- ду rС.
В електричному колі колектора проходить також власний зворотний струм колекторного переходу (некерований зворотний струм або початковий струм колектора), який має невелике значення (одиниці мікроампер). Його позначають через ІСВ0. Як і в НД зворотний струм колекторного переходу має три складові: струм екстракції (насичення) ІС0, термострум переходу ІСТ і струм поверхневої провідності
ІСП: ІСВ0=І0 + ІТ + ІП.
Повний струм колектора
І`С=ІЕ + ІСВ0. (4.3)
Корисною складовою є лише керована складова ІС`=ІВ. Отже, колекторний перехід являє собою зміщений у зворотному напрямі ЕДП, струм якого керується потоком електронів, інжектованих через емітерний перехід. Звідси випливає головна властивість БТ як керуючого (активного) елемента: залежність вихідного (колекторного) струму від вхідної змінної величини (струму емітера або напруги на емітерному переході). Струм колектора зі зміною струму емітера змінюється з дуже малою інерцією. Це дозволяє використовувати БТ не тільки на низьких, але й на високих частотах.
Розглянемо особливості керування вихідним струмом при вмиканні БТ за схемою із СЕ. Вхідний сигнал керує відкритим емітерним переходом, як і в схемі СЕ. Амплітуда ЕІС і в даному випадку визначає рівень струму емітера і, відповідно струм бази. При збільшенні струму емітера пропорційно збільшується струм бази. В схемі СЕ вхідним електродом є база, а тому прийнято оцінювати ступінь інжекції (струм емітера) через величину струму бази ІВ. Таким чином, оцінюючи величину струму бази, оцінюють зміни струму емітера і, відповідно, зміни вихідного струму – струму колектора. В схемі СЕ струм бази керує струмом колектора. Для оцінки цієї залежності використовують коефіцієнт - коефі- цієнт передачі струму бази. Його значення (>>1) і визначає підсилення струму в схемі із СЕ; так само, як і він є важливим параметром транзистора. Якщо збільшити від 0,95 до 0,99, то збільшиться від 19 до 99, тобто в п’ять разів. Ці коефіцієнти пов`язані співвідношеннями:
(4.4)
Кінцевим виразом є:
І`С = ІВ + ІСЕ0. (4.5)
Струм ІСЕ0 називають початковим наскрізним струмом.
Носії заряду, які інжектували в базу, рухаються до колектора внаслідок дифузії. Це відбувається за умови, якщо концентрація домішок в базі, емітері та колекторі впродовж цих ділянок є сталою величиною, що характерно для сплавних транзисторів (бездрейфових).
Сучасні транзистори виготовляють із змінною концентрацією домішок у базі. У зв’язку з тим, що концентрація домішок бази біля емітера більша, ніж біля колектора, рух носіїв через базу відбувається як внаслідок дифузії, так і внаслідок дрейфу. Тому транзистори із змінною концентрацією домішок в базі називають дрейфовими. У таких транзисторах спільна дія сил дифузії та дрейфу суттєво скорочує тривалість переміщення носіїв через базу, завдяки чому зменшується рекомбінація (тобто струм бази), підвищуються частотні параметри і швидкодія БТ.
