- •Основи електроніки навчальний посібник на базі програми схемотехнічного моделювання «multisim»
- •2.12. Поточний самоконтроль 83
- •2.10.1. Тестові контрольні запитання 83
- •3.7 Поточний самоконтроль 117
- •4.13. Поточний самоконтроль 166
- •5.10. Поточний самоконтроль 195
- •6.7. Поточний самоконтроль 230
- •7.5. Поточний самоконтроль 264
- •Передмова
- •Частина 1. Базові визначення, параметри та характеристики Розділ 1. Електричні інформаційні сигнали та типові системи їх обробки.
- •1.1. Узагальнена структура інформаційних систем
- •1.2 Компоненти радіоелектронної апаратури
- •1.2.1 Класифікація
- •1.2.2. Пасивні компоненти
- •1.2.3. Активні компоненти – електронні прилади
- •1.3. Типові процеси обробки еіс
- •1.4 Аналіз електронних пристроїв за постійним струмом, в частотній та часовій областях
- •1.5 Відносні та логарифмічні коефіцієнти підсилення
- •1.6.1 Класифікація
- •1.6.2 Подільники напруги
- •1.6.3. Генератори напруги та струму
- •1.6.5. Дослідження диференціюючих rc-схем
- •1.6.6. Дослідження інтегруючих rc-схем
- •1.7. Типові електронні інформаційні системи
- •1.7.1. Електроніка та радіотехніка
- •1.7.2. Вимірювальна система
- •1.7.3. Аналогові та цифрові системи
- •1.8.1. Основні постулати радіоелектроніки
- •1.8.2. Наноелектроніка
- •1.9. Поточний самоконтроль
- •1.9.1. Завдання для дослідження схем в ms
- •1.9.2. Тестові контрольні запитання
- •Частина іі. Активні компоненти реа Розділ 2. Електронно-дірковий перехід – напівпровідникова базова структура твердотілих компонентів реа
- •2.1. Класифікація речовин за провідністю
- •2.2. Дрейфовий та дифузійний струми власних напівпровідників
- •2.3 Домішкові напівпровідники
- •2.4. Визначення та класифікація електричних переходів
- •2.5. Електронно-дірковий перехід в стані рівноваги
- •2.6. Пряме та зворотне вмикання едп
- •2.7. Вольт-амперна характеристика ідеалізованого едп
- •2.8. Ємнісні властивості p-n переходу
- •2.9. Пробій p-n переходу
- •2.10. Перехід метал-напівпровідник
- •2.11. Особливості р-n переходів та їх використання для побудови різноманітних компонентів електронної апаратури
- •2.12. Поточний самоконтроль
- •2.10.1. Тестові контрольні запитання
- •Розділ 3. Напівпровідникові діоди та їх використання
- •3.1. Визначення, структура та класифікація
- •3.2. Вольт-амперна характеристика
- •3.3. Параметри нд
- •3.4. Модель та частотні властивості нд
- •3.5. Основні види пробою нд
- •3.6.Типові функціональні пристрої
- •3.6.1. Випрямлячі
- •3.6.3. Імпульсні діоди
- •3.6.4. Напівпровідникові стабілітрони. Параметричні стабілізатори напруги
- •3.6.5. Обмежувачі амплітуди
- •3.6.6. Варикапи та їх використання
- •3.6.7. Діоди Шотткі
- •3.7 Поточний самоконтроль
- •3.7.2 Контрольні запитання
- •Розділ 4. Біполярні транзистори
- •4.1. Структури, режими та схеми вмикання
- •4.2.Фізичні процеси в бт
- •Повний струм колектора
- •4.3. Статичні характеристики бт
- •4.3.1. Статичні характеристики бт із се
- •4.3.2. Статичні характеристики бт із сб
- •4.4. Температурний дрейф характеристик бт
- •4.5. Підсилення за допомогою бт
- •4.6. Графоаналітичний метод аналізу та розрахунку транзисторних схем
- •Коефіцієнт підсилення за струмом:
- •4.7. Динамічні властивості біполярних транзисторів
- •4.8. Ключовий режим бт
- •4.9. Порівняльний аналіз трьох схем вмикання бт
- •4.10. Власні шуми та шумові параметри транзисторів
- •4.11. Температурний режим та пробій бт
- •4.12. Основні типи біполярних транзисторів
- •4.13. Поточний самоконтроль
- •5. Польові транзистори
- •5.1. Типи польових транзисторів
- •5.2. Польовий транзистор з керувальним p-n‑переходом
- •5.4. Польові транзистори з ізольованими затворами
- •5.6. Ключовий режим мдн-транзистора
- •5.7. Температурні залежності та шуми польових транзисторів
- •5.8. Класифікація та особливості використання польових транзисторів
- •5.9. Порівняння польових та біполярних транзисторів
- •5.10. Поточний самоконтроль
- •5.10.2.Контрольні запитання
- •Розділ 6. Інтегральні мікросхеми
- •6.1. Особливості імс як активних компонентів
- •6.2. Класифікація інтегральних мікросхем
- •6.3.Аналогові інтегральні мікросхеми
- •6.3.1. Основні типи аіс
- •6.3.2. Схеми стабілізації режиму роботи каскаду підсилення.
- •6.3.3. Схеми зсуву рівнів напруг
- •6.4.Однокаскадні багатоцільові підсилювачі
- •6.5.Диференціальні підсилювачі
- •6.6. Операційні підсилювачі
- •6.6.1. Особливості оп
- •Р ис. 6.8. Принципова схема оп
- •6. 6. 2. Інвертувальна схема вмикання оп
- •Напругу на виході визначають напругою на конденсаторі:
- •6.6.4. Імпульсний режим оп
- •6.7. Поточний самоконтроль
- •6.7.2. Контрольні запитання
- •Розділ 7. Оптоелектронні напівпровідникові прилади
- •7.1. Особливості оптоелектроніки
- •7.2. Джерела оптичного випромінювання
- •7.2.1.Люмінесценція
- •7.2.2. Електролюмінесцентні індикатори
- •7.2.3. Випромінювальні діоди
- •7.3. Фотоелектричні напівпровідникові приймачі випромінювання
- •7.3.1. Внутрішній фотоефект
- •7.3.3. Фотодіоди
- •7.3.4. Фототранзистори
- •7.4. Оптрони та оптоелектронні імс
- •7.5. Поточний самоконтроль
- •7.5.1. Завдання для моделювання та дослідження схем в середовищі ms
- •Дослідити формування вихідних сигналів при надходженні інформаційних сигналів від двох джерел.
- •7.5.2.Контрольні запитання
- •Частина ш. Функціональні пристрої реа
- •8.1. Визначення, структурні схеми та класифікація підсилювачів
- •8.2. Основні характеристики та параметри еп
- •Для багато каскадного підсилювача
- •8.3. Підсилювачі з резистивно-ємнісним зв`язком
- •8.3.1. Особливості підсилювачів з резистивно-ємнісним зв`язком
- •8.3.2. Дослідження в частотній області.
3.3. Параметри нд
Напівпровідникові прилади оцінюють системою параметрів, які поділяють на граничні параметри, що визначають гранично допустимі значення (максимально і мінімально допустимі значення), та характеристичні (робочі) параметри. Допустиме значення параметра – це значення, у межах якого очікується задовільна робота приладу, а гранично допустиме – значення, за межами якого прилад може бути ушкодженим або виведеним з ладу.
Характеристичні значення параметрів – це значення електричної, теплової, механічної або іншої величин, які характеризують певні властивості приладу.
Використовуючи НД, не можна допускати занадто великих напруг або струмів, які могли б зіпсувати прилад. Для запобігання небажаним наслідкам, вибираючи той чи інший тип приладу для вмикання в електричне коло, оцінюють граничні параметри електричного режиму діода, передусім максимально допустиму постійну зворотну напругу UR mах та максимально допустимий постійний прямий струм ІF max діода. Максимально допустимими параметрами називають значення конкретних режимів електронних приладів, які не повинні бути перевищені за будь-яких умов експлуатації та за яких забезпечується задана надійність. Зазвичай значення цих параметрів, взяті з паспортних даних конкретного типу приладів, мають перевищувати максимальне значення відповідних параметрів в електричній схемі, в якій передбачено використання приладу.
Для будь-якого елемента електричної схеми небажаним є його нагрівання, зумовлене потужністю розсіювання приладу. Розрізняють пряму потужність розсіювання діода PF (значення потужності, що розсіюється діодом під час проходження прямого струму) та зворотну потужність розсіювання PR (значення потужності, що розсіюється діодом під час проходження зворотного струму). За цим параметром визначають зону безпечної роботи приладу, у будь-якій точці якої повинно виконуватися співвідношення ІU = P < Pmax. Здатність діодів розсіювати потужність оцінюють за допомогою теплового опору.
Аналізуючи електричні схеми з НД, використовують диференціальні параметри. Такими параметрами електронних приладів є величини, які зв’язують малі зміни струму з малими змінами незалежних змінних. Струм у діоді фактично є функцією двох незалежних змінних – електричної напруги U і температури Т:
І = f(U; T).
Тому диференціал струму має дві складові:
.
(3.4)
Частинні похідні перед диференціалами
dU
i dT
являють собою диференціальні параметри
НД. Якщо замінити нескінченно малі
прирости незалежних змінних їхніми
кінцевими приростами, то SЗ =
I/
U
| T =
const – диференціальна крутість ВАХ
діода (пряма провідність), мА/В;
SI(T) =
I/
T
|
V = const – диференціальна
температурна чутливість струму діода,
мА/єС (мА/К).
Диференціальний опір діода r визначають відношенням малого приросту напруги діода до малого приросту струму в ньому у заданому режимі.
Розглянуті параметри можна визначити за ВАХ діода (рис. 3.1). Зауважимо, що диференціальні параметри характеризують прилад тільки в заданій точці, а зі зміною режиму їхні значення істотно змінюються ( UА/ IА). У цій же точці визначають опір діода постійному струму (рис. 3.1):
R– = UА/IА. (3.5)
Максимально допустиме iз схемотехнічних міркувань збільшення зворотного струму діода визначається максимально допустимою температурою НД (80...100 С – для германієвих приладів i 150...200 С – для кремнієвих приладів).
Мінімальна допустима температура діода визначається теоретично енергією іонізації акцепторних та донорних домішок i досягає мінус 200 С. Практично з міркувань кліматичної стійкості її встановлюють від мінус 60 до мінус 70 С.
