- •Основи електроніки навчальний посібник на базі програми схемотехнічного моделювання «multisim»
- •2.12. Поточний самоконтроль 83
- •2.10.1. Тестові контрольні запитання 83
- •3.7 Поточний самоконтроль 117
- •4.13. Поточний самоконтроль 166
- •5.10. Поточний самоконтроль 195
- •6.7. Поточний самоконтроль 230
- •7.5. Поточний самоконтроль 264
- •Передмова
- •Частина 1. Базові визначення, параметри та характеристики Розділ 1. Електричні інформаційні сигнали та типові системи їх обробки.
- •1.1. Узагальнена структура інформаційних систем
- •1.2 Компоненти радіоелектронної апаратури
- •1.2.1 Класифікація
- •1.2.2. Пасивні компоненти
- •1.2.3. Активні компоненти – електронні прилади
- •1.3. Типові процеси обробки еіс
- •1.4 Аналіз електронних пристроїв за постійним струмом, в частотній та часовій областях
- •1.5 Відносні та логарифмічні коефіцієнти підсилення
- •1.6.1 Класифікація
- •1.6.2 Подільники напруги
- •1.6.3. Генератори напруги та струму
- •1.6.5. Дослідження диференціюючих rc-схем
- •1.6.6. Дослідження інтегруючих rc-схем
- •1.7. Типові електронні інформаційні системи
- •1.7.1. Електроніка та радіотехніка
- •1.7.2. Вимірювальна система
- •1.7.3. Аналогові та цифрові системи
- •1.8.1. Основні постулати радіоелектроніки
- •1.8.2. Наноелектроніка
- •1.9. Поточний самоконтроль
- •1.9.1. Завдання для дослідження схем в ms
- •1.9.2. Тестові контрольні запитання
- •Частина іі. Активні компоненти реа Розділ 2. Електронно-дірковий перехід – напівпровідникова базова структура твердотілих компонентів реа
- •2.1. Класифікація речовин за провідністю
- •2.2. Дрейфовий та дифузійний струми власних напівпровідників
- •2.3 Домішкові напівпровідники
- •2.4. Визначення та класифікація електричних переходів
- •2.5. Електронно-дірковий перехід в стані рівноваги
- •2.6. Пряме та зворотне вмикання едп
- •2.7. Вольт-амперна характеристика ідеалізованого едп
- •2.8. Ємнісні властивості p-n переходу
- •2.9. Пробій p-n переходу
- •2.10. Перехід метал-напівпровідник
- •2.11. Особливості р-n переходів та їх використання для побудови різноманітних компонентів електронної апаратури
- •2.12. Поточний самоконтроль
- •2.10.1. Тестові контрольні запитання
- •Розділ 3. Напівпровідникові діоди та їх використання
- •3.1. Визначення, структура та класифікація
- •3.2. Вольт-амперна характеристика
- •3.3. Параметри нд
- •3.4. Модель та частотні властивості нд
- •3.5. Основні види пробою нд
- •3.6.Типові функціональні пристрої
- •3.6.1. Випрямлячі
- •3.6.3. Імпульсні діоди
- •3.6.4. Напівпровідникові стабілітрони. Параметричні стабілізатори напруги
- •3.6.5. Обмежувачі амплітуди
- •3.6.6. Варикапи та їх використання
- •3.6.7. Діоди Шотткі
- •3.7 Поточний самоконтроль
- •3.7.2 Контрольні запитання
- •Розділ 4. Біполярні транзистори
- •4.1. Структури, режими та схеми вмикання
- •4.2.Фізичні процеси в бт
- •Повний струм колектора
- •4.3. Статичні характеристики бт
- •4.3.1. Статичні характеристики бт із се
- •4.3.2. Статичні характеристики бт із сб
- •4.4. Температурний дрейф характеристик бт
- •4.5. Підсилення за допомогою бт
- •4.6. Графоаналітичний метод аналізу та розрахунку транзисторних схем
- •Коефіцієнт підсилення за струмом:
- •4.7. Динамічні властивості біполярних транзисторів
- •4.8. Ключовий режим бт
- •4.9. Порівняльний аналіз трьох схем вмикання бт
- •4.10. Власні шуми та шумові параметри транзисторів
- •4.11. Температурний режим та пробій бт
- •4.12. Основні типи біполярних транзисторів
- •4.13. Поточний самоконтроль
- •5. Польові транзистори
- •5.1. Типи польових транзисторів
- •5.2. Польовий транзистор з керувальним p-n‑переходом
- •5.4. Польові транзистори з ізольованими затворами
- •5.6. Ключовий режим мдн-транзистора
- •5.7. Температурні залежності та шуми польових транзисторів
- •5.8. Класифікація та особливості використання польових транзисторів
- •5.9. Порівняння польових та біполярних транзисторів
- •5.10. Поточний самоконтроль
- •5.10.2.Контрольні запитання
- •Розділ 6. Інтегральні мікросхеми
- •6.1. Особливості імс як активних компонентів
- •6.2. Класифікація інтегральних мікросхем
- •6.3.Аналогові інтегральні мікросхеми
- •6.3.1. Основні типи аіс
- •6.3.2. Схеми стабілізації режиму роботи каскаду підсилення.
- •6.3.3. Схеми зсуву рівнів напруг
- •6.4.Однокаскадні багатоцільові підсилювачі
- •6.5.Диференціальні підсилювачі
- •6.6. Операційні підсилювачі
- •6.6.1. Особливості оп
- •Р ис. 6.8. Принципова схема оп
- •6. 6. 2. Інвертувальна схема вмикання оп
- •Напругу на виході визначають напругою на конденсаторі:
- •6.6.4. Імпульсний режим оп
- •6.7. Поточний самоконтроль
- •6.7.2. Контрольні запитання
- •Розділ 7. Оптоелектронні напівпровідникові прилади
- •7.1. Особливості оптоелектроніки
- •7.2. Джерела оптичного випромінювання
- •7.2.1.Люмінесценція
- •7.2.2. Електролюмінесцентні індикатори
- •7.2.3. Випромінювальні діоди
- •7.3. Фотоелектричні напівпровідникові приймачі випромінювання
- •7.3.1. Внутрішній фотоефект
- •7.3.3. Фотодіоди
- •7.3.4. Фототранзистори
- •7.4. Оптрони та оптоелектронні імс
- •7.5. Поточний самоконтроль
- •7.5.1. Завдання для моделювання та дослідження схем в середовищі ms
- •Дослідити формування вихідних сигналів при надходженні інформаційних сигналів від двох джерел.
- •7.5.2.Контрольні запитання
- •Частина ш. Функціональні пристрої реа
- •8.1. Визначення, структурні схеми та класифікація підсилювачів
- •8.2. Основні характеристики та параметри еп
- •Для багато каскадного підсилювача
- •8.3. Підсилювачі з резистивно-ємнісним зв`язком
- •8.3.1. Особливості підсилювачів з резистивно-ємнісним зв`язком
- •8.3.2. Дослідження в частотній області.
3.2. Вольт-амперна характеристика
Для НД як і будь-якого електричного приладу важливою є залежність між струмом, що проходить через прилад, та прикладеною напругою. Знаючи цю залежність, можна визначити струм при заданій напрузі або, навпаки, напругу при заданому струму.
Якщо опір приладу не залежить від струму чи напруги, то зв’язок між ними визначається законом Ома: I = U / R або I = G U. У цьому разі струм прямо пропорційний напрузі. Коефіцієнтом пропорційнocтi є провідність G = 1/R (рис.1.4.).
Прилади, принцип дії яких підкоряється закону Ома, а ВАХ є прямою лінією, що проходить через початок координат, називають лінійними.
Напівпровідникові
діоди є нелінійними приладами; в них
oпip залежить від напруги або струму,
внаслідок чого їх ВАХ є нелінійною і
несиметричною (рис .3.1)
З теоретичного аналізу р-п‑переходу випливає просте рівняння, яке точно описує ВАХ ідеалізованого НД як у разі прямого, так i зворотного змiщення (2.5.).
Якщо задати постійну пряму напругу UF, то у діоді проходитиме постійний прямий струм IF, а якщо задати постійну зворотну напругу UR – то зворотний струм IR. У виведенні експоненціальної залежності допущено деякі фізичні ідеалізації. Для реальних НД необхідно враховувати вплив опору базової зони rб. Відомо, що несиметричний перехід зосереджується у високоомному шарі, тобто в базі діода. З урахуванням rб точний вираз, що описує пряму гілку ВАХ діода, набирає вигляду:
І = І0{exp[(U – Irб)/т– 1]}. (3.1)
Отже, ВАХ реального НД зміщується вправо відносно координатної сiтки.
Диференціальний oпip у будь якій точці прямої гілки ВАХ
rд = dU/dI = т /(I + I0)+ rб. (3.2)
Оскільки тепловий потенціал т малий, то вже за невеликого прямого струму виконується нерівність т/(I + I0) << rб, і опір діода визначається лінійним опором бази rб. За цих умов експоненціальна залежнicть прямого струму переходить у лінійну. Такою є основна робоча ділянка ВАХ НД.
Прямий струм дорівнюватиме нулю доти, доки напруга не досягне відповідного значення, за якого струм почне швидко збільшуватися зі збільшенням UF. Напругу, при якій з’являється помітний струм, часто називають пороговою напругою діода. Типові значення цієї напруги для германієвих приладів дорівнюють 0,2...0,3 В, для кремнієвих – 0,6...0,7 В.
Початкова ділянка ВАХ вирізняється значною нелінійністю, оскільки зі збільшенням UF опір запірного шару зменшується, крутість ВАХ збільшується. Але, якщо напруги досягають десятих часток вольта, запірний шар практично зникає.
У реальних діодах, як і в ЕДП з підвищенням зворотної напруги зворотний струм не залишається постійним і не дорівнює струму екстракції (насичення) І0, як випливає iз співвідношення (3.1), а повільно зростає. Однією з причин цього зростання є термічна генерація нociїв заряду в переході. З підвищенням зворотної напруги внаслідок розширення переходу збільшується його об’єм, і тому зростає число генерованих в переході носіїв заряду i термострум переходу Іт. Ще однією складовою зростання зворотного струму діода є поверхнева провідність ЕДП, що зумовлює поверхневий струм Іп. Тоді повний зворотний струм реального НД:
ІR = І0 + Іт + Іп . (3.3)
З порівняння ВАХ кремнієвого i германієвого діодів видно, що кремнієві прилади мають істотно менше значення зворотного струму (у 106 разів) через нижчу концентрацію нociїв заряду. Це зумовлено більшою шириною забороненої зони (див. рис. 2.1 i 3.1).
