- •Основи електроніки навчальний посібник на базі програми схемотехнічного моделювання «multisim»
- •2.12. Поточний самоконтроль 83
- •2.10.1. Тестові контрольні запитання 83
- •3.7 Поточний самоконтроль 117
- •4.13. Поточний самоконтроль 166
- •5.10. Поточний самоконтроль 195
- •6.7. Поточний самоконтроль 230
- •7.5. Поточний самоконтроль 264
- •Передмова
- •Частина 1. Базові визначення, параметри та характеристики Розділ 1. Електричні інформаційні сигнали та типові системи їх обробки.
- •1.1. Узагальнена структура інформаційних систем
- •1.2 Компоненти радіоелектронної апаратури
- •1.2.1 Класифікація
- •1.2.2. Пасивні компоненти
- •1.2.3. Активні компоненти – електронні прилади
- •1.3. Типові процеси обробки еіс
- •1.4 Аналіз електронних пристроїв за постійним струмом, в частотній та часовій областях
- •1.5 Відносні та логарифмічні коефіцієнти підсилення
- •1.6.1 Класифікація
- •1.6.2 Подільники напруги
- •1.6.3. Генератори напруги та струму
- •1.6.5. Дослідження диференціюючих rc-схем
- •1.6.6. Дослідження інтегруючих rc-схем
- •1.7. Типові електронні інформаційні системи
- •1.7.1. Електроніка та радіотехніка
- •1.7.2. Вимірювальна система
- •1.7.3. Аналогові та цифрові системи
- •1.8.1. Основні постулати радіоелектроніки
- •1.8.2. Наноелектроніка
- •1.9. Поточний самоконтроль
- •1.9.1. Завдання для дослідження схем в ms
- •1.9.2. Тестові контрольні запитання
- •Частина іі. Активні компоненти реа Розділ 2. Електронно-дірковий перехід – напівпровідникова базова структура твердотілих компонентів реа
- •2.1. Класифікація речовин за провідністю
- •2.2. Дрейфовий та дифузійний струми власних напівпровідників
- •2.3 Домішкові напівпровідники
- •2.4. Визначення та класифікація електричних переходів
- •2.5. Електронно-дірковий перехід в стані рівноваги
- •2.6. Пряме та зворотне вмикання едп
- •2.7. Вольт-амперна характеристика ідеалізованого едп
- •2.8. Ємнісні властивості p-n переходу
- •2.9. Пробій p-n переходу
- •2.10. Перехід метал-напівпровідник
- •2.11. Особливості р-n переходів та їх використання для побудови різноманітних компонентів електронної апаратури
- •2.12. Поточний самоконтроль
- •2.10.1. Тестові контрольні запитання
- •Розділ 3. Напівпровідникові діоди та їх використання
- •3.1. Визначення, структура та класифікація
- •3.2. Вольт-амперна характеристика
- •3.3. Параметри нд
- •3.4. Модель та частотні властивості нд
- •3.5. Основні види пробою нд
- •3.6.Типові функціональні пристрої
- •3.6.1. Випрямлячі
- •3.6.3. Імпульсні діоди
- •3.6.4. Напівпровідникові стабілітрони. Параметричні стабілізатори напруги
- •3.6.5. Обмежувачі амплітуди
- •3.6.6. Варикапи та їх використання
- •3.6.7. Діоди Шотткі
- •3.7 Поточний самоконтроль
- •3.7.2 Контрольні запитання
- •Розділ 4. Біполярні транзистори
- •4.1. Структури, режими та схеми вмикання
- •4.2.Фізичні процеси в бт
- •Повний струм колектора
- •4.3. Статичні характеристики бт
- •4.3.1. Статичні характеристики бт із се
- •4.3.2. Статичні характеристики бт із сб
- •4.4. Температурний дрейф характеристик бт
- •4.5. Підсилення за допомогою бт
- •4.6. Графоаналітичний метод аналізу та розрахунку транзисторних схем
- •Коефіцієнт підсилення за струмом:
- •4.7. Динамічні властивості біполярних транзисторів
- •4.8. Ключовий режим бт
- •4.9. Порівняльний аналіз трьох схем вмикання бт
- •4.10. Власні шуми та шумові параметри транзисторів
- •4.11. Температурний режим та пробій бт
- •4.12. Основні типи біполярних транзисторів
- •4.13. Поточний самоконтроль
- •5. Польові транзистори
- •5.1. Типи польових транзисторів
- •5.2. Польовий транзистор з керувальним p-n‑переходом
- •5.4. Польові транзистори з ізольованими затворами
- •5.6. Ключовий режим мдн-транзистора
- •5.7. Температурні залежності та шуми польових транзисторів
- •5.8. Класифікація та особливості використання польових транзисторів
- •5.9. Порівняння польових та біполярних транзисторів
- •5.10. Поточний самоконтроль
- •5.10.2.Контрольні запитання
- •Розділ 6. Інтегральні мікросхеми
- •6.1. Особливості імс як активних компонентів
- •6.2. Класифікація інтегральних мікросхем
- •6.3.Аналогові інтегральні мікросхеми
- •6.3.1. Основні типи аіс
- •6.3.2. Схеми стабілізації режиму роботи каскаду підсилення.
- •6.3.3. Схеми зсуву рівнів напруг
- •6.4.Однокаскадні багатоцільові підсилювачі
- •6.5.Диференціальні підсилювачі
- •6.6. Операційні підсилювачі
- •6.6.1. Особливості оп
- •Р ис. 6.8. Принципова схема оп
- •6. 6. 2. Інвертувальна схема вмикання оп
- •Напругу на виході визначають напругою на конденсаторі:
- •6.6.4. Імпульсний режим оп
- •6.7. Поточний самоконтроль
- •6.7.2. Контрольні запитання
- •Розділ 7. Оптоелектронні напівпровідникові прилади
- •7.1. Особливості оптоелектроніки
- •7.2. Джерела оптичного випромінювання
- •7.2.1.Люмінесценція
- •7.2.2. Електролюмінесцентні індикатори
- •7.2.3. Випромінювальні діоди
- •7.3. Фотоелектричні напівпровідникові приймачі випромінювання
- •7.3.1. Внутрішній фотоефект
- •7.3.3. Фотодіоди
- •7.3.4. Фототранзистори
- •7.4. Оптрони та оптоелектронні імс
- •7.5. Поточний самоконтроль
- •7.5.1. Завдання для моделювання та дослідження схем в середовищі ms
- •Дослідити формування вихідних сигналів при надходженні інформаційних сигналів від двох джерел.
- •7.5.2.Контрольні запитання
- •Частина ш. Функціональні пристрої реа
- •8.1. Визначення, структурні схеми та класифікація підсилювачів
- •8.2. Основні характеристики та параметри еп
- •Для багато каскадного підсилювача
- •8.3. Підсилювачі з резистивно-ємнісним зв`язком
- •8.3.1. Особливості підсилювачів з резистивно-ємнісним зв`язком
- •8.3.2. Дослідження в частотній області.
2.7. Вольт-амперна характеристика ідеалізованого едп
Електронно-діркові переходи широко використовують як базові структури напівпровідникових приладів, а тому визначають вхідні та вихідні параметри таких компонентів електронних схем. Для їх оцінки важливою є характеристика залежності між напругою, яка діє на електродах приладу, і струмом – вольт-амперна характеристика. Для спрощення процедури виведення ВАХ аналізують ідеалізований p-n перехід.
Рівняння ВАХ ідеалізованого p-n переходу має вигляд :
,
(2.5)
де I0 – струм екстракції або струм насичення ; φT - температурний потенціал (при кімнатній температурі φT =0,026 В).
Рівняння ВАХ дозволяє одержати вираз для прямого ІF та зворотного ІR струмів p-n переходу. При прямому зміщенні зовнішня напруга, як правило, буде UF > 3 φT. Тому одиницею в дужках можна знехтувати. Залежність між струмом та прямою напругою відображається експонентою:
. (2.6)
Такому виразу відповідає несиметрична та нелінійна ВАХ (рис.1.6).
Це – найважливіша характеристика p-n переходу, вона широко використовується при аналізі напівпровідникових приладів і подана в розд.3.2.
2.8. Ємнісні властивості p-n переходу
Процеси
накопичення, розосередження, генерації
та регенерації, які відбуваються
безпосередньо в переході та за його
межами, обумовлюють інерційність
електричних перетворень. Дійсно, якщо
на ЕДП подати сходинку напруги або
струму, то перехідні процеси пробігають
так, як в електричних колах з конденсаторами.
Особливості електричних процесів у p-n
переході дозволяють виділити дві
складові повної ємності(
):
бар’єрну
та дифузійну.
Бар’єрна ємність. У запірному шарі ЕДП по обидва боки від металургійної межі виникають однакові за значенням, але протилежні за знаком об'ємні заряди іонів домішок. Залежно від прикладеної напруги змінюється товщина цього шару d (рис. 2.4) і, як наслідок, значення зарядів. Тобто маємо систему, аналогічну зарядженому конденсатору з діелектриком, функцію якого виконує збіднений шар. Ємність, створену цими процесами, називають бар’єрною. Вона збігається з ємністю плоского конденсатора з відстанню між обкладками, що дорівнює товщині запірного шару d. Вплив цієї ємності переважно виявляється при зворотному вмиканні p-n переходу. При збільшенні модуля зворотної напруги d збільшується, бар’єрна ємність - зменшується. Підвищення концентрації домішок збільшує ємність, оскільки відстань між обкладками зменшується.
Залежність ємності від зворотної напруги називається вольт-фарадною характеристикою. Властивість p-n переходу змінювати ємність шляхом зміни напруги використовується для побудови особливого типу напівпровідникових діодів - варикапів.
Дифузійна ємність. При прямій напрузі виявляються дві фізичні причини, що зумовлюють ємність p-n переходу. Перша з них полягає у зміні зарядів у збідненому шарі, що враховується за допомогою бар'єрної ємності, друга – в тому, що за рахунок інжекції змінюється концентрація носіїв у нейтральних зонах поблизу межі переходу, і значення заряду, накопиченого цими носіями. Цей процес відтворюється за допомогою дифузійної ємності. Така назва вказує на те, що зміна зарядів неосновних носіїв відбувається в результаті дифузії.
Дифузійна ємність експоненціально зростає при збільшенні прямої напруги, і при невеликих прямих напругах (для кремнію 0.4 ... 0.5В) дифузійна ємність Сдиф значно перевищує бар'єрну Сбар. При менших напругах, коли значно наростає струм рекомбінації, дифузійна ємність стає меншою від бар’єрної і нею нехтують. Отже, повна ємність p-n переходу становить суму двох складових:
,
(2.6)
причому
Cбар
впливає при зворотному вмиканні, а Сдф
- при прямому.
Наявність цих ємностей та їхні значення враховуються при створенні напівпровідникових приладів, призначених для роботи у високочастотних та швидкодіючих радіоелектронних пристроях, коли тривалість процесів накопичення – розосередження є сумарною з періодом зміни інформаційних сигналів або з їх тривалістю.
