
- •Класифікація обладнання, машин та споруд для експлуатації нафтових і газових родовищ
- •V група. Обладнання для експлуатації морських нафтогазових і газових промислів:
- •Vі група. Обладнання для збору і підготовки нафти і газу до транспортування:
- •Vііі група. Обладнання ремонтно-механічної служби для підтримування в працездатному стані всього парку машин, спеціального обладнання, споруд.
- •1 Обладнання експлуатаційної свердловини
- •1.1 Обсадні труби
- •1.2 Колонна головка (обв’язка)
- •1.3 Розрахунок колонної головки
- •1.4 Випробування колонних головок
- •1.5 Свердловинні ущільнювачі (пакери)
- •1.5.1 Призначення. Параметри. Типи. Конструктивні особливості
- •1.5.2 Конструкції ущільнювального елементу
- •Контрольні запитання
- •2 Обладнання для підйому продукції із свердловин. Обладнання для експлуатації свердловин фонтанним способом
- •2.1 Насосно-компресорні труби
- •2.2 Фонтанна арматура
- •2.2.1 Призначення. Умови експлуатації. Типові схеми. Параметри. Умовні позначення. Область раціонального застосування
- •2.2.2 Вибір типорозміру фонтанних арматур та їх виконання для нафтових і газових свердловин
- •2.2.3 Фонтанне обладнання закордонного виробництва
- •2.2.4 Запірні пристрої фонтанної арматури
- •Кульової (в) засувок
- •2.2.5 Регулюючі пристрої фонтанної арматури
- •2.2.6 Маніфольди фонтанної арматури
- •2.3 Фланцеві з’єднання фонтанних арматур
- •2.3.1 Типи фланцевих з’єднань
- •2.3.2 Визначення зусиль, що діють на фланцеве з’єднання
- •2.3.3 Перевірочний розрахунок деталей фланцевого з’єднання на статичну міцність
- •2.3.4 Перевірка шпильки на міцність
- •2.3.5 Розрахунок циліндричної частини елементів фонтанної арматури
- •2.3.6 Випробування фонтанних арматур
- •Контрольні запитання
- •3 Обладнання для газліфтної експлуатації свердловин
- •3.1 Призначення, склад та комплектність установок для експлуатації свердловин безкомпресорним та компресорним газліфтом
- •3.2 Різновиди газліфтних установок за функціональним призначенням
- •3.3 Свердловинне обладнання газліфтних установок. Технічні параметри та конструктивні особливості свердловинних камер, газліфтних клапанів
- •Контрольні запитання
- •4 Установки безштангових насосів для видобутку нафти
- •4.1 Обладнання установки заглибного електровідцентрового насоса. Умови застосування. Склад та призначення обладнання
- •4.1.1 Особливості конструкцій насосів типу евн
- •4. 1.2 Осьові опори та радіальні підшипники вала насоса
- •4.1.3 Вибір евн для нафтових свердловин
- •4.1.4 Вплив газу на роботу насосної установки
- •4.1.5 Методи боротьби зі шкідливим впливом газу на роботу насосної установки
- •4.1.6 Конструкції і принцип дії газосепараторів і диспергаторів
- •Умови експлуатації
- •4.1.7 Газосепаратори фірми Сentrilift
- •4.1.8 Газосепаратори і диспергатори фірми reda
- •4.1.9 Деякі розрахунки основних деталей
- •4.2 Установка заглибного гвинтового електронасоса
- •4.3 Установка заглибних діафрагмових електронасосів
- •4.4 Струменеві насосні установки
- •4.5 Вібраційні насосні установки
- •4.6 Установки гідропоршневих насосів
- •4.6.2 Порядок розрахунку параметрів вузлів гпну
- •5 Штангові свердловинні насосні установки
- •5.1 Штангова свердловинна насосна установка. Комплект обладнання
- •Контрольні запитання
- •5.2 Приводи шсн
- •5.2.1 Класифікація індивідуальних приводів штангових насосів за основними параметрами
- •5.2.2 Тихохідні верстати-качалки
- •5.2.3 Верстати-качалки з фігурним балансиром
- •5.2.4 Привод штангового свердловинного насоса щоглового типу
- •5.2.5 Безбалансирні верстати-качалки
- •5.2.6 Гідроприводні штангові насосні установки
- •Контрольні запитання
- •5.3 Кінематичний розрахунок балансирного приводу (верстата – качалки)
- •5.4 Визначення сил, які діють в точці підвісу штанг
- •5.4.1 Пружні деформації штанг і труб
- •5.4.2 Умови роботи та головні завдання розрахунків верстатів-качалок
- •5.4.3 Методи зрівноваження верстатів-качалок
- •5.4.5 Тангенціальні зусилля на пальці кривошипа верстата-качалки
- •5.4.4 Вибір способу зрівноваження і практичні методи зрівноваження
- •5.4.5 Визначення споживаної потужності установки
- •5.4.6 Сили, що діють на вузли верстата-качалки
- •5.5 Штангові свердловинні насоси
- •5.5.1 Класифікація і основні типи шсн
- •5.5.2 Вставні насоси
- •Виконання нв1с
- •5.5.3 Насоси для ускладнених умов експлуатації
- •5.5.4 Замкові опори
- •5.5.5 Невставні (трубні) насоси
- •5.5.6 Область застосування вставних і невставних (трубних) штангових свердловинних насосів
- •5.5.7 Основні вузли і деталі шсн та їх виконання
- •5.5.8 Розрахунок параметрів шсн
- •5.5.8 Нагнітальний клапан
- •5.5.10 Всмоктувальний клапан
- •5.5.11 Розрахунок на міцність деталей свердловинного насоса
- •5.6 Насосні штанги
- •5.6.1 Умови експлуатації штанг
- •5.6.2 Сталі для виготовлення насосних штанг, область застосування, основні правила транспортування та зберігання
- •5.6.3 Виготовлення насосних штанг і з’єднувальних муфт
- •5.6.4 Механічні параметри і матеріали для насосних штанг
- •5.6.5 Аналіз причин руйнування штангових колон
- •5.6.6 Методи розрахунку насосних штанг
- •5.6.7 Вдосконалення технологій виробництва сталевих штанг
- •5.6.8 Методи захисту штанг від корозійного і корозійно-механічного руйнування
- •5.6.9 Методи підвищення експлуатаційних показників штанг
- •5.6.10 Пустотілі сталеві насосні штанги
- •Технічна характеристика пустотілих штанг, які випускаються в рф
- •5.6.11 Безперервно-намотувані штанги
- •5.6.12 Склопластикові штанги
- •5.7 Допоміжне обладнання штангових свердловинних насосних установок
- •5.7.1 Центратори та протектори
- •5.7.2 Амортизатори
- •5.7.3 Газосепаратори
- •5.8 Діагностування роботи шсну
- •5.9 Вибір обладнання шсну
- •6 Установки штангових гвинтових насосів для видобутку нафти
- •6.1 Склад обладнання
- •6.2 Привод штангових гвинтових насосів
- •6.3 Особливості роботи і розрахунку штанг з гвинтовими насосами
- •6.4 Вибір обладнання гвинтових штангових насосних установок
- •7 Підземний ремонт свердловин. Обладнання для проведення підземного ремонту свердловин
- •7.1 Структура підземного ремонту свердловин
- •7.1.1 Поточний ремонт свердловин
- •7.1.2 Капітальний ремонт свердловин
- •7.2 Класифікація обладнання для поточного ремонту свердловин
- •7.3 Класифікація обладнання для капітального ремонту свердловин
- •7.4 Інструмент та пристрої для спо при існуючому рівні механізації
- •7.4.1 Штропи
- •7.4.2 Спайдери
- •7.4.3 Клини
- •7.4.4 Ключі
- •7.4.5 Трубні і штангові механічні ключі
- •7.4.6 Ключ штанговий
- •7.5 Інші види обладнання
- •7.5.1 Ротори
- •7.5.2 Вертлюги
- •7.5.3 Гвинтові вибійні двигуни
- •7.5.4 Талева система
- •7.6 Агрегати для підземного ремонту свердловин
- •7.6.1 Загальна характеристика та класифікація
- •7.6.2 Особливості конструкцій агрегатів
- •7.7 Розрахунок підйомника
- •7.7.1 Визначення навантаження на гак
- •7.7.2 Швидкості підйому і спуску колони труб і штанг.
- •7.7.3 Розрахунок фрикційної муфти зчеплення
- •7.7.4 Розрахунок стрічкового гальма
- •7.7.5 Вплив довжини свічки на темп
- •7.8 Обладнання для промивання піщаних відкладень в нафтових і газових свердловинах
- •7.8.1 Вимоги до насосних установок та їх вибір
- •8 Обладнання для збору та підготовки нафти, газу і води
- •8.1 Системи збору та підготовки нафти, газу і води на промислах
- •8.2 Загальна схема системи збору продукції свердловини
- •Перелік використаних та рекомендованих джерел
4.1.6 Конструкції і принцип дії газосепараторів і диспергаторів
Газосепаратори виготовляються відповідно до наступних нормативних документів:
ТУ 26-06-1416-84. Модулі насосні - газосепаратори МНГ і МНГК.
ТУ 313-019-92. Модулі насосні – газосепаратори Ляпкова МН ГСЛ.
ТУ 3381-003-00217780-98. Модулі насосні - газосепаратори МНГБ5.
За принциповою схемою ці газосепаратори є відцентровими. Вони є окремими насосними модулями, що монтуються перед пакетом ступеней нижньої секції насоса за допомогою фланцевих з'єднань. Вали секцій або модулів з'єднуються шліцьовими муфтами.
Одним з перших пристроїв був газосепаратор П.Д. Ляпкова - відомого російського вченого. Принцип дії даного газосепаратора полягає в тому, що ротор, обертаючись з валом насоса, створює інтенсивний обертальний рух суміші в сепараторі, завдяки чому відбувається розділення суміші на рідину і газ. Газ під дією градієнта тиску, що виникає при обертанні суміші, видавлюється з кільця суміші, що обертається, у бік найменшого тиску, тобто до центру, а рідина під дією відцентрових сил відкидається до периферії внутрішньої камери газосепаратора.
Більше 10 років тому запущений в серійне виробництво сепаратор 1МНГ5 до ЕВН п’ятої розмірної групи. Він успішно працював в широкому діапазоні зміни умов експлуатації. Проте сепаратор мав складну конструкцію, велику масу, був схильний до абразивного зношення і обривання по корпусу сепаратора. Крім того, в умовах високого газовмісту на багатьох режимах спостерігався істотний вплив газу на роботу ЕВН, обладнаних 1МНГ5.
Тому виникла необхідність створення нового типу сепаратора. Ученими ДАНГ ім. І. М. Губкіна був запропонований новий тип сепарації, на основі якого фахівці АТ «Лебедянський машинобудівний завод» розробили конструкцію модуля насосного газосепаратора МН-ГСЛ5 (рис. 4.4) до заглибних насосів групи 5. Маса нового сепаратора виявилася приблизно в 2 рази меншою, ніж у 1МНГ5, зокрема, - за рахунок спрощення конструкції. Крім того, в МН-ГСЛ5 передбачений захист внутрішньої поверхні корпусу від абразивного зносу. Новий газосепаратор дозволяє стабільно працювати насосу до 80 % вмісту газу. З метою порівняння сепараторів за ефективністю газовідділення були проведені спеціальні стендові випробування.
Газосепаратор типу МН(К) - ГСЛ складається з трубного корпусу 1 з головкою 2, основи 3 з приймальною сіткою і вала 4 з розташованими на ньому робочими органами. У головці виконано дві групи перехресних каналів 5, 6 для газу і рідини і встановлена втулка радіального підшипника 4. В основі розміщені закрита сіткою порожнина з каналами 8 для прийому газорідинної суміші, підп'ятник 9 і втулка 10 радіального підшипника. На валу розміщені п'ята 11, шнек 12, осьове робоче колесо 13 з суперкавітуючим профілем лопатей, сепаратори 14 і втулки радіальних підшипників 15. У корпусі розміщені напрямна решітка і гільзи. Газосепаратор працює таким чином: газорідинна суміш (ГРС) потрапляє
через сітку і отвори вхідного модуля на шнек і далі до робочих органів газосепаратора. За рахунок отриманого напору ГРС потрапляє в камеру сепаратора, обладнану радіальними ребрами, де під дією відцентрових сил газ відділяється від рідини. Далі рідина з периферії камери сепаратора потрапляє по каналах перехідника на прийом насоса, а газ через похилі отвори відводиться в затрубний простір.
Конструкція газосепаратора типу МН(К) - ГСЛ представлена на рис. 4.4.
ВАТ «Борець» пропонує газосепаратори двох типів:
- модульні (моделі МНГБ5, МНГБ5А, 1МНГБ52);
- вбудовані в нижню секцію насоса.
Рисунок 4.4 - Газосепаратор типу МН(К)-ГСЛ
Газосепаратори ВАТ «Борець» мають головку оригінальної конструкції, яка розділяє потоки газу і рідини і підвищує ефективність роботи газосепаратора. Всі типи газосепараторів забезпечені захисною гільзою, що оберігає корпус газосепаратора від гідроабразивного зношення. Завдяки цьому підвищується ресурс роботи обладнання, зменшується ймовірність аварій. Газосепаратори 1МНГБ5 і 1МНГБ52 не мають осьової опори вала, що спрощує їх конструкцію. Модель 1МНГБ52 призначена для використання на свердловинах з підвищеним газовим фактором. Газосепаратор має здвоєну конструкцію, що дозволяє зменшити загальну довжину насосної установки в порівнянні з установкою, укомплектованою двома газосепараторами.
Осьові опори валів моделей МНГБ5 і МНГБ5А можуть бути виконані з наступних матеріалів: «бельтінг-сталь» - для звичайних умов експлуатації; «кераміка - кераміка» - для ускладнених умов експлуатації.
Розширена номенклатура газосепараторів дозволяє підібрати найбільш ефективний з них залежно від умов експлуатації.
Модулі насосні - диспергатори МНДБ5 (виробництва ВАТ «Борець») призначені для подрібнення газових включень в пластовій рідині, підготовки однорідної газорідинної суміші і подачі її на вхід насоса. Диспергатори МНДБ5 встановлюються на вході насоса замість вхідного модуля. Максимальний допустимий вміст вільного газу на вході в диспергатор при максимальній подачі – 55 % за об'ємом. При проходженні потоку газорідинної суміші через диспергатор підвищується її однорідність і ступінь подрібнення газових включень, завдяки чому покращується робота відцентрового насоса: зменшується його вібрація і пульсація потоку в насосно-компресорних трубах, забезпечується робота із заданим ККД. За насосом в НКТ з перекачувальної рідини виділяється вільний газ, який, розширюючись, здійснює додаткову роботу по підйому рідини зі свердловини. В цілому, застосування диспергатора сприяє покращенню умов роботи насоса, підвищенню стабільності його характеристик і збільшенню економічності всієї установки заглибного відцентрового насоса.