
|
Оглавление
Кризис окружающей среды 1. Экосфера 2. Ядерное пламя 3. Воздух Лос-Анджелеса 4. Земля Иллинойса 5. Вода озера Эри 6. Человек в экосфере 7. Население и благосостояние 8. Технологический просчет 9. Социальные факторы 10. Проблема выживания 11. Экономическое значение экологии 12. Замыкающийся круг Дополнение Экология и социальные действия Выступление на фестивале, посвящённом 50-летию газеты «Унита»
Гидрометеоиздат, 1974 г. |
Люди только что вновь открыли для себя окружающую среду — ту самую среду, в которой они живут. В Соединенных Штатах это событие было торжественно отмечено во время Недели Земли, проходившей в апреле 1970 года. Это походило на внезапное и шумное пробуждение ото сна. Школьники занялись уборкой мусора; студенты организовали грандиозные демонстрации; наиболее решительные граждане изгоняли с улиц автомобили, по крайней мере днем. Казалось, каждый проникся сознанием того, что окружающей среде угрожает опасность и что с этим надо что-то делать.
Едва ли не каждый писатель, едва ли не каждый оратор, которые выступали в университетских городках, на улицах, по радио и телевидению, охотно давала рекомендации по поводу того, как ликвидировать кризис.
Некоторые из них преподносили проблему окружающей среды как политически безобидную: Экология становится политическим синонимом слова «материнство». (Джесси Унрах, лидер демократов Ассамблеи штата Калифорния.)
Однако ФБР отнеслось к ней более серьезно: 22 апреля 1970 года представители ФБР наблюдали за группой из 200 людей, собравшейся на Спортивном поле чуть позже 1.30 пополудни. Через несколько минут к ним присоединилась группа студентов Университета имени Джорджа Вашингтона; они монотонно распевали: «Господь Бог не умер: он загрязняет Землю». Вскоре после 8 вечера появился сенатор Эдмунд Маски (демократ) от штата Мэн и произнес короткую речь, направленную против загрязнения воздуха. После сенатора Маски выступил журналист И. Ф. Стоун, который двадцать минут говорил о загрязнении воздуха и высказывался в антимилитаристском и антиправительственном духе. (Отчет ФБР, включенный сенатором Маски в свой доклад Конгрессу от 14 апреля 1971 года.)
Одни возлагали вину за загрязнение на рост населения; Проблема загрязнения проистекает из проблемы населения. Куда девал свои отходы американский переселенец-одиночка — не имело большого значения. Однако когда население стало более плотным, естественные химические и биологические циклические процессы начали испытывать перегрузку… Свобода пастбищ приведет к всеобщему краху (Джеррет Харден, биолог).
Цепочка причин ухудшения (окружающей среды. — Б.К.) легко приводит нас к его первопричине. Слишком много машин, слишком много заводов, слишком много детергентов, слишком много пестицидов, слишком много конденсационных следов самолетов, слишком неудовлетворительные системы очистки стоков, слишком мало воды и слишком много углекислого газа — все эти факторы легко можно свести к одному: слишком много людей. (Пауль Эрлих, биолог.)
Другие обвиняли изобилие… Общество изобилия становится обществом «отходов». Население Соединенных Штатов, составляющее 6 процентов всего населения мира, производит 70 процентов, а может быть, и более, всех твердых отходов мира. (Уолтер С. Говард, биолог.)
… и превозносили бедность: Блаженны голодающие негры с Миссисипи, которые ведут экологически правильный образ жизни именно потому, что они ничего не имеют; они-то и спасут страну. (Вейн Девис, биолог.)
И все же надо бороться с бедностью: Вы не должны осуществлять программы обуздания экономического роста, не учитывая долю дохода каждого; самые неимущие люди не должны жить в еще более угнетающих условиях, но должны получить свою долю и обрести возможность жить по-человечески. (Джордж Уили, химик и председатель Национальной организации защиты прав человека на благосостояние.)
… и в то же время не препятствовать развитию промышленности: Дело не в промышленности самой по себе, дело в потребностях общества. А потребности общества увеличиваются в геометрической прогрессии вследствие повышения жизненных стандартов и продолжающегося роста населения… Если мы сможем разъяснить лидерам — как национального, так в местного масштаба — кампании в защиту окружающей среды ту основную логическую предпосылку, что население вызывает загрязнение, — тогда мы сможем сфокусировать их внимание на главном аспекте проблемы. (Шерман Р. Кнапп, председатель Совета предпринимателей Северо-Востока.)
Если одни видели корень зла в исконной агрессивности человека: Первая проблема, следовательно, — люди… Вторая проблема, пожалуй, наиболее фундаментальная, коренится в нас самих —* в нашей неистребимой агрессивности… Как сказал Энтони Сторр, «самое грустное — это то, что мы — самый * жестокий, самый безжалостный из всех биологических видов, которые когда-либо порождала Земля» (Уильям Рос, директор Тихоокеанской компании страхования жизни.)
то другие утверждали, что человек просто дурно воспитан: Люди боятся своей человечности, потому что их систематически учат быть бесчеловечными, …Они не понимают, что это значит — любить природу. И потому наш воздух загрязнен, наши реки отравлены и наши земли истощены (Артуро Сандоваль, студент.)
Министр винил во всем прибыли: Насилие над окружающей средой стало фактом нашей национальной жизни только потому, что оно более выгодно, чем разумное использование ограниченных ресурсов Земли. (Ченнинг Филлипс, министр по делам религии.)
В то же время историк обрушивался на религию: На христианстве лежит огромная доля вины… Экологический кризис будет все более обостряться до тех пор, пока мы не отвергнем христианскую аксиому, согласно которой природа предназначена для одной-единственной цели — служить человеку. (Линн Уайт, историк.)
Политики обвиняли технологию: Неудержимо рвущаяся вперед технология, у которой только один эакон — прибыль, годами отравляла наш воздух, уничтожала нашу почву, сводила наши леса и разлагала наши воды. (Вэнс Хартис, сенатор от штата Индиана.)
А специалисты по окружающей среде предъявляли претензии политикам: Вызывает удивление паралич, охвативший политические органы правительства, от которых в первую очередь зависит придать законодательную силу требованиям экологов… Предприниматели, которые добиваются прибыли ценой насилия над окружающей нас средой, видят, что законодатели предоставляют им полную свободу и что бюрократы поддерживают подобную позицию. (Родерик А. Камерон, Фонд защиты окружающей среды.)
Выдвигались обвинения против капитализма: Да, это официальная позиция — заговор против загрязнения. И наша программа проста — остановить Агню и сокрушить капитализм. Мы вносим только одну поправку в наши взгляды на загрязнение — каждый должен зажечься и включиться в борьбу. …Мы говорим стране Агню: День Земли — это день сыновей и дочерей Американской революции, которые свергнут капитализм и сделают нас свободными. (Ренни Дэвис, член «Чикагской семерки».)
А капиталисты бросались в контратаку: Точка зрения, которую я пытаюсь доказать, состоит в том, что мы решаем большинство наших проблем… что обстановка не ухудшается, а улучшается… что американская промышленность тратит 3 миллиарда долларов ежегодно на то, чтобы очистить нашу окружающую среду, я еще миллиарды — на то, чтобы выпускать такие продукты, которые сохраняют ее чистоту в неприкосновенности… и что реальная опасность — не в системе частного предпринимательства, которая сделала Америку самой процветающей, самой могущественной и самой щедрой страной в мире. Нет, сегодня опасность кроется в лоббистах — этих могильщиках, которые — кто из корыстных побуждений, кто просто по невежеству ~ подрывают американскую систему и ставят под угрозу жизни и судьбы американских граждан. Некоторые из этих граждан позволяют пессимистам самого мрачного толка запугивать себя разговорами об атомном уничтожении. После второй мировой войны умерло более миллиарда людей — они терзали себя призраком атомной и ядерной бомб, но умерли по другим причинам. Они терзали себя совершенно напрасно. (Томас Р. Шепард, издатель, журнал «Лук».)
И наконец, нашелся один человек, который считал, что виноваты все: Мы испытываем противника, а противник испытывает нас. (Пого.)
Неделя Земли и вызванный ею взрыв дискуссий, речей и всяческих прогнозов поразили множество людей, включая и нас, тех, кто многие годы делал все для того, чтобы довести кризис окружающей среды до сознания общества. Что удивило лично меня — так это многочисленные и уверенные объяснения причин кризиса и предложения, направленные на его ликвидацию. Мне, несколько лет потратившему на то, чтобы только лишь выявить и описать растущий перечень проблем, связанных с окружающей средой — радиоактивные выпадения, загрязнение воздуха и воды и деградация почвы, — и установить связи некоторых из этих проблем с социальными и политическими процессами, называть какую-то одну причину и какое-то одно средство ее ликвидации казалось слишком смелым шагом. В течение Недели Земли я сталкивался с такой ограниченностью не один раз.
После того как страсти, вызванные Неделей Земли, улеглись, я попытался отыскать какой-то смысл в сумбуре противоречивых высказываний, которые она породила. И пришел к выводу; что этот сумбур объяснялся вот чем: ситуация была настолько сложна и запутанна, что каждый, кто находил в ней хоть какое-то подтверждение своим собственным представлениям о человеческой природе, экономике и политике, — выступал со своими предложениями. Неделя Земли оказалась зеркалом скорее субъективных убеждений, чем объективного знания.
Неделя Земли убедила меня в необходимости помочь публике более глубоко понять происхождение кризиса окружающей среды и возможные пути eго разрешения. Об этом я и говорю в своей книге. Это попытка выяснить, что же означает в действительности кризис окружающей среды.
Чтобы понять это, нужно начать с первоисточника самой жизни, окружающей Землю тонкой оболочки из воздуха, воды и почвы и лучистой солнечной энергии, что пронизывает ее. Именно эта оболочка несколько миллиардов лет назад породила и вскормила жизнь. По мере развития жизни ее старые формы трансформировали оболочку Земли, а новые — приспосабливались к этим изменениям. Постепенно возрастала численность живых организмов, увеличивалось количество и разнообразие их видов, и в конце концов образовалась глобальная система жизни. Искусно приспосабливаясь к окружающей среде, живые организмы сами становились ее творцами.
Это все и есть экосфера, дом, построенный на поверхности Земли самой жизнью.
Любой организм, если он хочет выжить, должен приспособиться к экосфере. Кризис окружающей среды — это признак того, что имевшееся до последнего времени соответствие между жизнью и ее окружением начинает распадаться. А когда нарушаются связи между отдельными живыми организмами и между их совокупностью и окружающей средой, начинают ослабевать — а в некоторых местах вообще прекращаются — динамические взаимодействия, которые поддерживали систему в целом. Почему после миллионов лет гармоничного сосуществования связи между живыми организмами и окружающей их средой начали расстраиваться? Где начала распускаться ткань экосферы? Как далеко может зайти этот процесс? Как нам остановить его и возобновить нарушенные связи?
Понимание процессов, происходящих в экосфере, затруднено тем, что эти процессы выходят за рамки наших обычных представлений. У нас уже входит в привычку рассматривать отдельно взятые, единичные события, каждое из которых имеет свою обособленную, единственную причину. Но в экосфере каждое событие — это одновременно причина: отходы животных становятся пищей для почвенных бактерий; продуктами жизнедеятельности бактерий питаются растения; растения поедают животные. Трудно найти подходящую аналогию экологическим циклам в человеческой деятельности, особенно в наш век техники, когда машина А производит продукт В, а продукт В, однажды использованный, выбрасывается, и дальнейшая его судьба не имеет никакого значения ни для машины, ни для продукта, ни для потребителя.
В этом — первый большой недостаток жизни человека в экосфере. Мы разомкнули круг жизни, превратив ее бесчисленные циклы в линейные цепи искусственных событий: нефть добывается из-под земли, перерабатывается в топливо, сжигается в двигателях, превращаясь при этом во вредные газообразные продукты, которые выбрасываются в атмосферу. На конце цепочки — смог*. Другой пример антропогенных нарушений экосферных циклов — внесение в природу ядовитых химических веществ, сточных вод, гор мусора — также подтверждает нашу способность разорвать экологическую ткань, которая в течение миллионов лет поддерживала жизнь на планете.
* Смог – смесь тумана и продукты сгорания или других выбрасываемых в атмосферу промышленных отходов. — Прим. ред.
Внезапно мы открыли то, что должны были бы знать много раньше: экосфере мы обязаны своим существованием и всем, чего мы достигли; все, что вносит разлад в гармонию экосферы, угрожает ее окончательно сбалансированным циклам; отбросы не только неприятны, не только токсичны, но, что более существенно, они могут привести к гибели экосферы.
Если мы хотим выжить, мы должны понять причину надвигающейся катастрофы. Понять это — дело намного более сложное, чем даже сама экосфера. Наши атаки на экосистему так мощны, так многочисленны, так взаимосвязаны, что, хотя опасность, которую они представляют, ясна, очень трудно определить, как она была создана. Каким оружием? Чьими руками? Виновен ли в кризисе экосферы просто рост численности населения? Или паша страсть к благополучию и богатству? Или машины, которые мы создали, чтобы увеличивать это богатство? Могущественная технология, которая теперь снабжает нас искусно упакованными товарами, одевает нас в искусственные материалы, которая заваливает нас все новыми химическими изделиями?
Настоящая книга посвящена этим вопросам. Она начинается с описания экосферы, той самой среды, в которой цивилизация творит свои великие — и опасные — дела. Затем описываются некоторые из разрушений, которые мы причинили экосфере: воздуху, воде, почве. Сегодня, однако, пугающие примеры разрушения окружающей среды стали обыденным явлением и даже несколько надоели. Гораздо менее ясен вопрос о том, какие из этих примеров мы должны прежде всего изучить. Именно поэтому я решил не лить слезы о наших прошлых ошибках, а постараться получше понять их. Большая часть книги представляет собой попытку выяснить, какие человеческие деяния разомкнули круг жизни и почему это произошло. Я прослеживаю кризис окружающей среды, идя от его очевидных проявлении в экосфере к экологическим перегрузкам, которые его отражают, к промахам в технологии производства — ее научном фундаменте, — которые ответственны за эти перегрузки, и в конечном итоге — к тем экономическим, социальным и политическим силам, которые толкали нас на путь самоуничтожения. Все это я делаю в надежде — и в ожидании, что, однажды поняв причины кризиса окружающей среды, мы сможем предпринять усилия для ее сохранения.
I. Экосфера
Для того чтобы выжить на Земле, человеку нужны стабильные условия существования в окружающей среде.
Однако совершенно очевидно, что наш нынешний образ жизни на Земле ведет к разрушению ее тонкой оболочки, поддерживающей жизнь, ведет к нашей собственной гибели. Чтобы представить себе это бедствие, надо начать с рассмотрения природы окружающей нас среды. Для большинства из нас это трудная задача, так как наше отношение к природной среде имеет некоторую специфику. Биологически человек представляет собой лишь часть единой природной системы. И в то же самое время человеческое общество призвано эксплуатировать эту систему в целом для того, чтобы производить материальные блага. Парадоксальное положение, которое мы занимаем в природе, играя одновременно роли ее представителя и эксплуататора, мешает нам правильно понять ее.
Представители диких племен считают человека зависимой частью природы, хрупкой тростиночкой в жестоком мире, управляемом неумолимыми законами, которым надо следовать, если хочешь выжить. Подчиняясь этой необходимости, первобытные племена могут достигнуть замечательного знания окружающей их среды. Условия жизни африканских бушменов: нехватка воды и пищи, экстремальные погодные условия — одни из самых суровых на Земле, и выживают они лишь благодаря необычайно тонкому пониманию окружающей природы. Бушмен может, например, вернувшись из дальнего и долгого странствия, найти единственный клубень, примеченный им раньше, чтобы утолить жажду в сухой сезон.
Мы, которые называем себя передовыми людьми, как будто избавлены от такой зависимости. Бушмен должен выжимать влагу из найденного клубня, нам же достаточно открыть кран. Вместо бездорожья степей мы имеем сеть городских улиц. Вместо того чтобы искать солнечного тепла, когда холодно, или укрываться от него, когда жарко, мы согреваем или охлаждаем себя при помощи машин. Все это заставляет нас считать, что мы сами создаем окружающую нас среду и не зависим больше от каких-либо природных факторов. Выжимая как можно больше выгод из современной науки и техники, мы пришли к роковой иллюзии, что с помощью наших машин мы, наконец, избавились от давления природных условий.
Хорошая иллюстрация этого заблуждения — реактивный лайнер. Сидя в удобных креслах крылатого алюминиевого вагона, несущегося на высоте нескольких миль над землей, где воздух разрежен почти до точки кипения крови, двигаясь с такой скоростью, что солнце кажется застывшим на месте, легко поверить, что мы победили природу и сбросили с себя рабскую зависимость от земли, воды и воздуха.
Но эту иллюзию нетрудно разбить, ведь самолет — тоже создание природной среды. Его двигатели сжигают нефть и кислород — продукты зеленых растений. Каждая деталь самолета ведет свое происхождение от природы. Сталь пришла из доменной печи, которая питается углем, водой и кислородом, то есть продуктами природы. Алюминий выплавлен с помощью электричества, также полученного от сгорания топлива и кислорода или от энергии падающей воды. Глядя на пластиковую отделку салона, мы должны понимать, что для получения той энергии, которая потребовалась на изготовление этого пластика, опять-таки ушло какое-то количество угля, на изготовление каждой детали понадобились сотни литров чистой воды. Если бы не продукты природной среды — кислород, вода, топливо, — самолет, как и люди, не мог бы существовать
Природа создает огромный, необычайно сложный живой механизм, который образует тонкую динамическую оболочку поверхности Земли, и вся человеческая деятельность зависит от работы этого механизма — как в целом, так и отдельных его деталей. Если бы зеленые растения не обладали способностью к фотосинтезу, не было бы кислорода для наших двигателей, доменных печей и топок, не было бы условий для жизни человека и животных. Если бы ив биологические процессы, протекавшие в почве на протяжении многих тысячелетий, у нас бы не было ни сельскохозяйственных растений, ни угля, ни нефти. Этот механизм — наш биологический капитал, фундамент, на котором строится вся наша производственная деятельность. Если мы разрушим его, вся ваша хваленая техника окажется бесполезной и любая экономическая или политическая система, основанная на ней, пойдет ко дну. Кризис окружающей среды — это сигнал приближающейся катастрофы.
Глобальная экосистема представляет собой продукт нескольких миллиардов лет эволюционных изменений в строении земной коры. Возраст Земли — приблизительно 4,5—5 миллиардов лет. Как она образовалась из облака космической пыли, породившей солнечную систему, еще не совсем ясно. Но мы знаем, что вначале Земля была безжизненной, скалистой массой, омываемой атмосферой, насыщенной водяным паром, водородом, аммиаком и метаном.
Теперь хорошо известно, что это простое начало породило весь комплекс земной поверхности, включая живую природу. Происхождение жизни — это фундаментальный вопрос. Живая материя построена почти исключительно из четырех элементов — водород, кислород, углерод и азот, — тех, что входили в состав первичной атмосферы Земли. Но в живой материи эти элементы построили удивительно сложные молекулярные формы, представляющие собой класс органических соединений. Основное свойство органических соединений — это связанный ряд атомов углерода, образующих прямые или разветвляющиеся цепочки и круги. В эту главную структуру встроены другие ведущие атомы — водорода, кислорода и азота (и, в меньшей степени, добавления, такие как сера, фосфор и различные металлы) — в пропорциях и пространственном расположении, характерных для каждого отдельного типа органических веществ. Сложность и разнообразие этих веществ головокружительны.
Каким был процесс, объединивший несколько простых составляющих первобытной земной атмосферы в монументальный комплекс, великолепно сыгранный ансамбль органических веществ, которые составляют нынешнюю живую материю? Долгое время предполагалось, что эти свойства присущи только живой материи. А отсюда следует, что жизнь в своем полном химическом единстве возникла на Земле в результате какого-то единичного спонтанного события или была занесена из космического пространства. Согласно этой точке зрения, жизнь должна была зародиться на Земле раньше, чем появилось органическое веществе.
Теперь мы внаем, что на самом деле все было наоборот и что органические соединения возникли из простых компонентов первичной атмосферы в ходе не биологических, а геохимических процессов, и затем сами породили жизнь. Геохимическое происхождение органических веществ было имитировано в лаборатории: под действием ультрафиолетового излучения, электрической искры или нагревания в смеси воды, аммиака и метана появлялись обнаруживаемые количества таких органических соединений, как аминокислоты которые, соединяясь друг с другом, превращались в белок. Поверхность первобытной Земли получала достаточное количество ультрафиолетового излучения, источником которого была солнечная радиация. Следовательно, есть твердое основание полагать, что в подобных условиях из простых компонентов первичной земной атмосфер! постепенно образовались различные органические соединения. Таким образом, по излюбленному выражению основателя в той теории, профессора А. И. Опарина, на Земле возник своего рода «органический бульон» *.
*Понятие «органический бульон» А. Испарин неоднократно используетв своей книге «происхождение жизни на земле» — классической работе по этому вопросу, — Прим. авт.
В этом «органическом бульоне» два или три миллиарда лет назад и появились первые живые организмы. Как это произошло - узнать очень заманчиво, но трудно; к счастью, нам достаточно известно о свойствах первых форм жизни для того, чтобы установить, как они зависели от окружающей среды и как влияли на неё.
Теперь нам представляется совершенно очевидцам, ЧТО первые формы жизни были вскормлены «органическим бульоном». Все живое требует для своего питания органических веществ, которые служат источником жизненной энергии и строительным материалом для живой материи. В ранней атмосфере Земли кислород практически отсутствовал, поэтому первые живые организмы должны были получать энергию непосредственно из пищи, без окислительных процессов. Такой тип метаболизма, ферментация, — наиболее примитивный способ производства энергии живыми организмами; его продуктом всегда является углекислый газ.
Будучи сами продуктом медленного геохимического процесса длившегося несколько миллиардов лет, первые живые формы, в свою очередь, стали мощным фактором геохимических изменений. Сначала они быстро исчерпали земные запасы органических веществ — продуктов геохимической эволюции, которые служили им пищей. Позднее первые фотосинтезирующие организмы опять преобразовались в органическую субстанцию. Затем последовало стремительное развитие зеленых растений в тропическом климате древней Земли, что привело к возникновению мощных отложений органического углерода, который со временем превратился в уголь, нефть и природный горючий газ. И благодаря фотосинтетическому разложению молекул воды, содержащих кислород, земная атмосфера приобрела свободный кислород. Некоторая его часть превратилась в озон — сильнейший поглотитель ультрафиолетовой радиации. Теперь впервые земная поверхность получила защиту от ультрафиолетовой радиации, серьезно препятствовавшей развитию жизни. Это событие позволило живой материи покинуть свою колыбель — первобытную водную среду. С появлением свободного кислорода стали возможными более совершенные формы метаболизма и огромное количество эволюционных ветвей растений и животных начали заселять планету. Тем временем благодаря растениям и микроорганизмам твердые грунты превратились в почву п тем самым возникла чрезвычайно сложная система взаимозависимых видов жизни. Подобная же система развилась в поверхностных водах. Эти системы определили состав почвы, поверхностных вод и воздуха и соответственно климат.
Тут содержится очень важный урок. В той форме, в которой она впервые появилась, живая система Земли имела врожденный и фатальный порок: необходимая для жизни энергия извлекалась из невосполнимого источника — геохимического запаса органической материи. Совершая эту непоправимую ошибку, быстро развивающаяся жизнь должна была поглотить первобытный «органический бульон» Земли. Жизнь должна была разрушить условия своего собственного выживания. Выживание — свойство, ныне так глубоко ассоциирующееся с жизнью, — стало возможным благодаря своевременному вмешательству эволюции: возникновению первых фотосинтезирующих организмов. Эти новые организмы использовали солнечный свет для преобразования углекислого газа и неорганических веществ в свежую органическую субстанцию. Это решающее событие превратило отбросы первых форм жизни, углекислый газ, в пищу, органические соединения. Произошло замыкание, фатальный линейный процесс был трансформирован в циркуляцию, самовозобновляющийся цикл. С тех пор продолжение жизни на Земле зависит от практически неиссякаемого источника энергии — Солнца.
Так в упрощенном виде перед нами предстает великая схема, которая обеспечивает замечательное постоянство жизни: взаимодействие одного жизненного процесса с другими; и одновременное, взаимосвязанное развитие живой природы Земли и неорганических веществ; повторяющаяся трансформация живой материи в гигантских циклах, приводимых в действие солнечной энергией. Рассмотрение этой эволюции позволяет сделать несколько заключений о природе жизни и ее взаимодействии со средой.
Живая материя в целом произошла из неживой оболочки Земли. Жизнь — это могущественный химический фактор, который, возникнув однажды на Земле, быстро изменил ее поверхность. Каждый живой организм тесно связан со своим физическим и химическим окружением, и если оно изменяется, могут возникнуть новые формы жизни, приспособленные к новым условиям. Жизнь порождает жизнь, и, однажды появившись в благоприятных условиях, новые её формы распространяются до тех пор, пока не оккупируют все пригодные экологические ниши в физическом среде. Каждый организм связан со множеством других: или косвенно — через физические в химические условия, или непосредственно — через пищу или убежище. В каждом живом организме, вплоть до отдельной его клетки, происходит и другой процесс — в своих границах настолько же сложный, насколько и в природной системе, — процесс взаимодействия огромного числа сложнейших молекул, иначе говоря, химические реакции, которые определяют жизненные свойства организма в целом.
Очень немногие из нас, представителей научного мира, в состоянии разобраться в системах подобной сложности. В современной науке мы привыкли иметь дело с гораздо более простыми ситуациями – как одна частичка сталкивается с другой или как молекула А реагирует с молекулой В. Столкнувшись с такой сложной ситуацией, как природная среда с неисчерпаемым многообразием живых форм, мы склонны, одни в большей степени, другие в меньшей, сводить ее в своих рассуждениях к набору отдельных простых задач, в надежде, что их сумма дает что-то близкое к картине целого. Наличие кризиса окружающей среды свидетельствует об иллюзорности этих надежд. До недавнего времени биологи изучали изолированные растения а животных, биохимики изучали молекулы, изолированные в пробирках, накапливая обширную, детальную систему данных современной биологической науки. Однако эти отдельные данные не были обобщены в такой степени, чтобы объяснить, например, экологию озера и причины ее уязвимости.
Я сделал это признание, прежде чем перейти к осуществлению своего намерения — описать окружающую среду таким образом, чтобы облегчить понимание сущности нынешнего кризиса. Это признание должно напомнить о том, что любое подобное описание держится на весьма неуклюжих костылях. Мы слишком долго игнорировали необходимость понимания сложных природных процессов, я потому наши методы еще очень грубы.
Рассмотрим различные аспекты проблемы внешней среды. Прежде всего — пространственная неоднородность: как можно рассматривать в рамках одного комплекса представлений, как некую постоянную данность, существование густо населенных, калейдоскопически пестрых тропических джунглей и кажущихся мертвыми и неизменными пустынь? Затем — бесконечное разнообразие видов жизни в природе: какими общими свойствами характеризуется биологическое поведение мышей, ястреба, форели, земляного черва, кишечных бактерий человека или водоросли, которая окрашивает озеро Эри в зеленый цвет? Далее — разнообразие биохимических процессов, которые не только протекают внутри каждого организма, но и связывают его с другими организмами и окружающей средой: как мы можем объединить в единую схему такие явления, как фотосинтез, разложение органических веществ ферментами, кислородное сгорание или сложную химическую зависимость одного организма от другого, которая лежит в основе паразитизма?
Каждый из этих взглядов на природную систему есть только тонкий разрез через сложное целое. Каждый освещает некоторые свойства целого, но общая картина получается по необходимости искаженной. Потому что, рассматривая один комплекс взаимоотношений, мы неминуемо игнорируем многие другие, а ведь в реальном мире каждая вещь связана со всеми остальными.
Один из интересных разрезов природной среды можно получить, прослеживая траекторию движения химических элементов, которые ее составляют. Хороший пример — азот, один из основных элементов как живой, так и неживой природы. Четыре химических элемента, которые служат строительным материалом живой материи — углерод, водород, кислород и азот, — движутся через в экосферу в громадных пересекающихся циклах: то это компонент воздуха, то элемент живого организма, то отбросы в водной среде, которые с течением времени могут превратиться в минеральные отложения или окаменелые останки.
Среди этих четырех элементов живого азот играет особо важную роль, потому что он служит чувствительным индикатором качества жизни. Первый признак нищеты — это недостаток азотсодержащей пищи. Следствием этого является слабое здоровье, потому что многие детали живой машины — белки, нуклеиновые кислоты, ферменты и гормоны — построены из молекул, содержащих азот. Таким образом, азот непосредственно связан с нуждами человека, и, как видим, глобальный процесс миграции азота — это особенно важный для нас баланс.
В экосфере азот присутствует в сравнительно небольшом количестве химических форм. Наиболее типичное свойство химии азота заключается в том, что молекулы, содержащие азот, очень редко связываются с кислородом. Около 80 процентов земных запасов азота находится в атмосфере, где он существует в виде инертного газа. Большая часть оставшихся 20 процентов азота заключена в почвен¬ном гумусе, очень сложной органической субстанции. Другая значительная доля содержится в живых организмах — почти исключительно в составе органических соединений.
Имея в виду эти сведения, попробуем взглянуть на некоторые свойства азотного цикла в природной среде. Лучше всего начать с почвы, изначального источника почти всей пищи и множества видов промышленного сырья. Почва — это чрезвычайно сложная экосистема, представляющая собой результат сбалансированного взаимодействия широкого многообразия микроорганизмов, животных растений, функционирующих в установившейся физической среде. Азот поступает в почву благодаря азотной фиксации, процессу, осуществляемому различными бактериями и водорослями, одни из которых живут в почве самостоятельно, а другие связаны с корнями бобовых, таких, как клевер, или с листьями некоторых тропических растений. Другой источник азота почвы — разложение отходов растительных и животных организмов. Значительная часть его оказывается связанной с гумусом. Гумус медленно высвобождает азот под действием почвенных микроорганизмов, которые переводят его в нитраты. В свою очередь нитраты, поглощаемые корнями растений, переходят в белок и другие жизненно важные составляющие растений. Растения поедают животные, экскременты и трупы животных возвращаются в почву, и цикл завершается.
Пожалуй, наиболее медленный процесс в этом цикле — высвобождение нитратов из гумуса. В результате естественное содержание нитратов в почвенной влаге невелико и корни должны усиленно работать, чтобы доставить растениям пищу. Для этой работы растениям требуется энергия, которая высвобождается в ходе биологических окислительных процессов, происходящих в корнях. Требующийся для этого кислород должен поступать к корням из воздуха, а процесс этот эффективен лишь в том случае, когда почва достаточно пористая. Пористость почвы очень сильно зависит от содержания в ней гумуса, потому что гумус имеет пористую структуру. Таким образом, пористость почвы, а следовательно, содержание в ней кислорода и эффективность усвоения питательных веществ корнями растений находится в тесной связи с содержанием гумуса в почве. В своем развитии растение преобразует неорганические питательные вещества в органическую материю (растительная субстанция), которая, распадаясь в почве, увеличивает содержание в ней гумуса, что, в свою очередь, повышает пористость почвы и в конечном итоге способствует эффективному росту растений.
Здесь целесообразно остановиться и рассмотреть два ряда взаимоотношений, которые только что были описаны: первый — миграция атомов азота в общем почвенном круговороте, второй — взаимная зависимость между эффективностью роста растений и структурой почвы. Отметим, что эти циклы различны по своей природе. Один описывает в буквальном смысле слова движение физического объекта — атома азота, другой, более абстрактный, включает в себя ряд зависимостей между процессами. Эти циклы тесно соприкасаются между собой в критической точке — гумусе. В рамках одного цикла гумус — это главный запас почвенного азота, необходимого для роста растений, в рамках второго им определяется физическая структура почвы, от которой зависит эффективность использования питательных соединений, в том числе азота, высвобождаемого гумусом.
Эта двойная роль гумуса в почве усиливает эффекты изменений свойств почвы. Так, если уменьшается содержание гумуса в почве, то падает и содержание нитратов, необходимых для роста растений. В то же самое время уменьшается и эффективность поглощения корнями питательных веществ, поэтому процесс воздействия гумуса на рост растений является самоускоряющимся. И наоборот, достаточное количество гумуса ее только обеспечивает хороший запас азота, но и способствует эффективному усвоению его растениями. Любой природный агент, который, подобно гумусу, одновременно участвует в двух циклах или больше, играет, по-видимому, могущественную роль во всей системе в целом. Подобные связи увеличивают сложность системы, тонкость ее плетения и потому способствуют ее стабильности. Вот почему, когда эти петли слабеют, экологическая ткань рвется.
Как видно, для того чтобы понять решающее значение гумуса как примера только что описанных связей, мы должны были рассмотреть его одновременно в обеих ролях. К сожалению, такой способ анализа не распространен ввиду той специализации, которая разделяет биологов па два лагеря: или специалистов по почвенной структуре, или специалистов по питательным веществам растений. Как мы увидим несколько позже, в естественной тенденции думать только об одной какой-то вещи и состоит главная причина нашего непонимания окружающей среды и тех грубых ошибок, которые приводят к ее разрушению.
В естественных водоёмах превалирует сходный круговорот азота, с тою лишь разницей, что там отсутствуют крупные запасы органического азота, в почве представленные гумусом. В водных экосистемах азот движется циклически, проходя следующие этапы: рыбы дают органические отбросы; разлагающие микроорганизмы высвобождают азот из органических соединений и, связывая его с кислородом, переводят в нитраты; последние преобразуются в органическую форму водорослями; органическое вещество водорослей служит пищей для мелких водных животных (зоопланктона); они, в свою очередь, поедаются рыбой. Соотношение между скоростью разложения органических веществ и скоростью роста водорослей определяет концентрацию нитратов в воде.
Надо сказать, что лишь незначительная часть нитратов попадает в воду из почвы, хотя вода принимает самое активное участие в почвенном цикле. В результате содержание нитратов в естественных поверхностных водах очень низко, порядка одной части на миллион, а соответственно невелика и популяция водорослей. Это делает воду чистой и почти совершенно избавляет ее от органических частиц.
В сравнении с другими экологическими аренами — почвой и водой — атмосфера является наибольшей и наиболее однородной средой и гораздо меньше зависит от биологических процессов. Воздух имеет постоянный состав: около 80 процентов газообразного азота, около 20 -газообразного кислорода, очень небольшой процент (около 0,03) углекислого газа и незначительное содержание нескольких редких газов, таких как гелий, неон, аргон, а также водяной пар. Как и все на Земле, поведение к воздушного океана подчиняется циклам, но они значительно больше определяются физическими явлениями, нежели химическими или биологическими.
В небольшом временном масштабе атмосферные циклы — это то, что мы называем погодой. Погодные циклы управляются солнечной энергией, которая непрерывно поступает на Землю. Каждая субстанция земной поверхности, которая поглощает солнечную энергию, например почва, нагревается ею, если только эта энергия не вызывает изменения физического состояния. Энергия, поглощаемая льдом, вместо того чтобы нагревать его, может перевести его в жидкое состояние — воду. Энергия, поглощенная водой, или нагревать ее, или переводит в газообразное состояние — водяной пар. Если поглощающая субстанция легко меняет свое физическое состояние — например, вода в океане — то, несмотря на значительное количество поглощенной солнечной энергии, температура повышается незначительно. Вот почему в солнечный день песок горячий, а вода относительно холодна. После захода солнца воздух над горячим песком, будучи теплым и легким, поднимается; более холодный воздух с воды занимает его место — это прохладный береговой бриз.
Поглощаемая океанами, которые покрывают две трети земной поверхности, значительная доля солнечной энергии расходуется на переход воды из жидкого в газообразное состояние, процесс испарения. Каждый грамм водяного пара приносит в атмосферу вполне определенное количество солнечной энергии (около 536 грамм-калорий). Когда происходит обратный процесс — переход водяного пара в жидкость путем конденсации — это же количество энергии высвобождается. Так, энергия, полученная от Солнца, скажем, в летние жаркие дни Карибским морем, поступает в воздух с водяным паром. Когда водяной пар поднимается от земной поверхности, он встречается с очень холодным воздухом стратосферы и конденсируется, образуя дождевые капли. Каждый грамм водяного пара, который конденсируется в дождевые капли, высвобождает 536 калорий энергии. Вся эта энергия нагревает воздух, вызывая его подъем, холодный воздух опускается к поверхности, чтобы занять место поднимающегося теплого воздуха, — и возникают ветры. Таково происхождение карибских ураганов.
Это лишь несколько примеров погодных процессов и ежедневных изменений в атмосфере, которая омывает каждый уголок Земли, Для нас здесь существенно то обстоятельство, что в ходе погодных процессов происходит передвижение воздушных масс, покрывающих отдельные местности, например город, и вымывание взвешенных примесей, например загрязнителей. Погодные процессы способствуют очищению воздуха. Все, что попадает в атмосферу, вовлекается в эти процессы и, в конечном итоге, приносится на земную поверхность, где входит в природные кругообороты, происходящие в воде и почве.
Если движение воздуха незначительно, то все, что попадает в воздух за счет локальных процессов — например, смог, накапливается там. Спокойная погода способствует расположению теплого воздуха над холодным. Это отличается от обычных условий, когда наблюдается обратная картина: нижние слои воздуха теплее, чем верхние. Такое явление называется инверсией. Так как холодный воздух плотнее, чем теплый, вертикальной циркуляция в этих условиях становится невозможной. Инверсия может удерживать одни и те же воздушные массы над городом в течение несколько дней. В таких случаях — как это было, например, в Нью-Йорке в ноябре 1965 года, — концентрация * загрязнений может достигнуть критического уровня.
Погодные процессы происходят главным образом в нижних слоях атмосферы — между земной поверхностью и высотами порядка 10— 12 километров. Выше начинается стратосфера, почти лишенная влаги, облаков, дождя или снега. Некоторые примеси, поступающие в воздух, настолько легки, что попадают в стратосферу, где они могут оставаться очень долго. Некоторые осколочные радионуклиды — продукты ядерных взрывов — связаны именно с такими мельчайшими частичками, и они могут оставаться в стратосфере месяцами.
Изменения в составе атмосферы, имеющие больший временной масштаб, могут сильно повлиять на интенсивность и спектр солнечной радиации, которая достигает земной поверхности. Такой эффект может быть вызван увеличением содержания в атмосфере частиц пыли, водяного пара, облаков, углекислого газа и озона. Вообще говоря, водяной пар и облака действуют как щит: излучение, идущее к Земле от Солнца, рассеивается водяными каплями, так что значительная его часть не может дойти до поверхности. Таким образом, облачность понижает температуру на Земле.
Углекислый газ обладает специфическим свойством: он прозрачен для большей части солнечного спектра, кроме инфракрасной. В этом смысле углекислый газ подобен стеклу, которое беспрепятственно пропускает видимый свет, но отражает инфракрасный. Именно на этом эффекте основаны парники. Энергия видимой части излучения проходит через стекло и поглощается почвой в парнике, а затем превращается в тепло, которое теперь испускается почвой в виде инфракрасного излучения. Последнее, достигая стеклянной поверхности парника, отражается обратно и & сохраняется внутри парника в виде тепла. Вот почему даже в не обогреваемых парниках в солнечный зимний день тепло. Подобно стеклу, углекислый газ. атмосферы регулирует температуру земной поверхности как гигантский энергетический клапан. Солнечная энергия видимой часта спектра легко проходит через него; достигая поверхности Земли, большая часть этой энергии превращается в тепло, но испускаемое нагретой землей инфракрасное излучение задерживается в атмосферном парнике, поглощаясь углекислым газом.
Таким образом, чем выше концентрация углекислого газа в атмосфере, тем большая часть солнечной радиации усваивается Землей в виде тепла. Это объясняет, почему в ранний период истории Земли, когда концентрация углекислого газа была высокой, средняя температура на нашей планете достигала тропического уровня. Затем, когда появилась огромная масса растений, большая часть углекислого газа перешла в органическое вещество растений (которое затем отложилось в виде угля, нефти и природного газа), климат Земли стал холоднее. Теперь, когда мы сжигаем эти запасы топлива и превращаем их в углекислый газ, концентрация его в атмосфере увеличивается; как это может повлиять на температуру на Земле — вопрос, который сегодня служит предметом научной дискуссии.
Другая составляющая воздуха, озон, играет особую роль в регулировании потока радиации, достигающей поверхности Земли. Озон — это химически активные молекулы, состоящие из трех атомов кислорода, соединенных в виде треугольника. Он хорошо поглощает ультрафиолетовую радиацию. Озон образуется из кислорода, но поскольку у земной поверхности он интенсивно реагирует с другими веществами, этот газ присутствует как таковой в основном лишь в верхних, слоях стратосферы. И вот, в то время как атмосфера Земли получила кислород благодаря фотосинтезу зеленых растений, планета в свою очередь получила озоновый щит на больших высотах. А до этого земная поверхность омывалась интенсивным ультрафиолетовым излучением, которое фактически было энергетическим источником в процессе преобразования компонентов первичной земной атмосферы — метана, воды и аммиака — в «бульон» из органических соединений, где впервые зародилась жизнь. Однако ультрафиолетовая радиация очень опасна для чувствительного равновесия химических реакций в живых клетках, и, по-видимому, первые живые организмы выжили только потому, что они развивались под слоем воды, достаточно мощным, чтобы защитить их от ультрафиолетовой радиации, достигающей поверхности Земли.
Лишь с появлением кислорода и озонового щита интенсивность ультрафиолетовой радиации на земной поверхности понизилась достаточно для того, чтобы живые организмы смогли уйти из-под защиты воды и начать заселение суши. Продолжительное существование сухопутной жизни стало возможным благодаря озоновому слою в стратосфере — защите, которая сама явилась продуктом жизни. Если бы содержание озона в стратосфере уменьшилось, сухопутная жизнь серьезно пострадала бы от солнечной ультрафиолетовой радиации. К сожалению, некоторые виды человеческой деятельности создают эту угрозу. Например, сверхзвуковая авиация (СЗА),
Таковы, в общих чертах, природные циклы, которые управляют тремя большими глобальными системами: воздухом, водой и почвой. В пределах каждой из них живут тысячи видов различных организмов. Каждый вид приспособлен к своей экологической нише и каждый в ходе своей жизнедеятельности влияет на физические и химические свойства непосредственно окружающей его среды.
Каждый вид жизни связан со множеством других. Эти связи ошеломляют своим разнообразием и восхищают своей сложностью. Животное, например олень, зависит от растений как от источника пищи; растение зависит от почвенных бактерий, доставляющих ему питательные вещества; бактерии в свою очередь живут в отбросах, оставляемых животными на почве. В то же самое время олень служит пищей для горных барсов. Одни насекомые питаются соками растений или цветочной пыльцой, другие — сосут кровь животных. Бактерии могут жить во внутренних тканях животных и растений. Грибковые разлагают ткани мертвых растений и животных. Все это сложнейшее многообразие взаимоотношений между отдельными видами создает грандиозную паутину жизни на Земле.
Наука, которая изучает взаимоотношения и процессы, связывающие каждый живой организм с его физико-химической средой, называется экологией. Это наука о домоводстве в планетарном масштабе. Об окружающей нас среде можно сказать, что это до«, созданный на Земле жизнью для жизни. Экология — молодая наука, и многое из того, чему она учит, стало известно в ходе изучения лишь небольших сегментов единой живой системы Земли. Экология еще не достигла такой целостности и степени обобщения, какие характерны, скажем, для физики. Тем не менее она сумела сделать ряд обобщений, которые почти с очевидностью следуют из того, что мы теперь знаем об экосфере, и которые могут быть представлены в виде некоторой системы «законов экологии». Они описаны ниже.
ПЕРВЫЙ ЗАКОН ЭКОЛОГИИ: все связано со всем
Некоторые из доводов, на которых построено это обобщение, уже обсуждались. Оно отражает существование колоссальной сети связей в экосфере: между различными живыми организмами, между популяциями, видами, а также между отдельными организмами и их физико-химическим окружением. То положение, что экосистема состоит из множества взаимосвязанных частей, где одна воздействует на другую, имеет несколько удивительных следствий. Наша способность представить себе поведение таких систем в значительной степени обязана развитию не столько экологии, сколько науки кибернетики. Ее основные понятия и даже само название — заслуга изобретательного ума Норберта Винера.
Слово «кибернетика» происходит от греческого слова «рулевой»; оно обозначает цепочку событий, которые управляют поведением системы. Рулевой — это часть системы, в которую входят также компас, рулевое устройство и корабль. Если корабль отклоняется от фиксированного компасом курса, стрелка компаса показывает это. Это явление, отмеченное рулевым, влечет за собой другое: рулевой поворачивает штурвал, который возвращает корабль к прежнему курсу. После этого стрелка компаса занимает свое прежнее положение, по курсу, и цикл завершен. Если при небольшом отклонений стрелки компаса рулевой поворачивает штурвал слишком далеко, отклонение корабля от курса опять фиксируется компасом, который сигнализирует рулевому о необходимости дополнительной коррекции, которая производится обратным движением. Таким образом, реализация этого цикла стабилизирует курс корабля.
Точно так же построены стабилизирующие кибернетические связи в экологическом цикле. Возьмем, например, пресноводный экологический цикл: 2 рыба — органические отбросы разлагающие бактерии — неорганические продукты — водоросли и рыба. Предположим, что необычно теплая летняя погода обусловила быстрый рост водорослей. Это влечет за собой истощение запаса! неорганических питательных веществ; таким образом, два «сектора круга, водоросли и питательные вещества, выходят из равновесного состояния, но в противоположных направлениях. Механизм экологического цикла, аналогично тому, как это было с кораблем, вскоре возвращает систему к равновесию. Увеличившись в количестве, водоросли становятся более доступной пищей для рыбы, это уменьшает популяцию водорослей, увеличивая количество отбросов у рыб а, следовательно, приводит к увеличению содержания питательных веществ в воде после разложения отбросов. Таким образом, количество водорослей и питательных веществ возвращается к своему первоначальному, равновесному соотношению.
В подобных кибернетических системах правильный курс поддерживается не жестким контролем, но гибкостью. Корабль, например, не движется все время прямолинейно, а совершает синусоидальное движение, попеременно отклоняясь в обе стороны от правильного курса. Частота этих Отклонений зависит от относительных скоростей на разных стадиях цикла, таких, например, как скорость, с которой корабль слушается руля.
Экологические системы подчиняются подобным же циклам, хотя они часто смазываются суточными или сезонными вариациями погоды или другими факторами окружающей среды. Наиболее типичным примером подобных экологических колебаний могут послужить периодические флуктуации численности; популяций пушного зверя. Например, по данным охотничьего промысла в Канаде известно, что колебания численности кроликов имеют 10-летнюю цикличность. Когда кроликов много, рысь процветает; рост популяции рыси влечет за собой уменьшение популяции кроликов; когда она уменьшается значительно, для возросшего числа рысей начинает не хватать пищи; когда рыси начинают вымирать, их охота на кроликов становится менее интенсивной и последних становится больше. И так далее. Эти колебания являются следствием простой замкнутой связи, когда численность популяции рыси есть возрастающая функция от количества кроликов и когда численность популяции кроликов есть убывающая функция от количества рысей.
Подобные осциллирующие системы всегда подвержены опасности гибели: когда колебания достигают слишком большой амплитуды, система уже не может их компенсировать. Допустим, к примеру, что в одном из колебаний связи кролики — рысь рыси уничтожили всех кроликов (или, что то же самое, всех, кроме одного). Теперь популяция кроликов уже не может быть восстановлена. Рыси начинают вымирать, так как отсутствует пища; но на этот раз уменьшение численности рысей не влечет за собой восстановления численности кроликов. Рыси вымирают полностью. Система кролики — рыси приходит к гибели.
То, что мы называем «эвтрофикацией», также напоминает экологический упадок. Если содержание питательных веществ в воде становится настолько высоким, чтобы стимулировать быстрый рост водорослей, плотная популяция водорослей не может существовать долго. Поскольку толщина слоя водорослей растет, резко уменьшается поступление в нижние слои воды света, необходимого для фотосинтеза; поэтому любой скачок в развитии водорослей сопровождается быстрой их гибелью и появлением органических останков. Содержание их в воде может достичь настолько высокого уровня, что на их разложение уйдет весь кислород, растворенный в воде. Но тогда погибнут разлагающие бактерии, так как без кислорода они не могут существовать. Совершенный механизм водной экосистемы приходит в упадок.
Динамика поведения кибернетической системы — например частота ее собственных колебаний, быстрота ее реакции на внешние изменения и общая скорость ее функционирования — зависят от относительных скоростей, характерных для отдельных ее звеньев. В корабельной системе реакция стрелки компаса длится доли секунды, рулевого — несколько секунд, корабля — минуты. Эти различия в быстроте реакции порождают, например, характерную частоту колебаний курса корабля около правильного его значения.
В водной экосистеме каждому биологическому звену также свойственна своя характерная скорость реакции, которая зависит от скорости метаболических процессов и размножения соответствующих организмов. Так, для появления нового поколения рыбы необходимо несколько месяцев, водорослей – несколько дней, разлагающие бактерии способны размножаться за несколько часов. Скорость метаболизма этих организмов, то есть скорость, с которой они усваивают питательные вещества, используют кислород или продуцируют отбросы, связана обратной зависимостью с их размерами. Если скорость метаболизма рыбы принять за единицу, то для водорослей эта скорость будет составлять около 100, а для бактерий — порядка 10 000 единиц.
Для того чтобы вся циклическая система в целом оставалась в равновесии, необходимо, чтобы общая скорость ее внутренних процессов управлялась наиболее медленным звеном, в данном случае — ростом и метаболизмом рыб. Любое внешнее воздействие, которое ускоряет часть цикла и тем самым заставляет какую-то одну часть системы работать быстрее, чем система в целом, приводит к неблагоприятным последствиям. Так, например, скорость продуцирования рыбой отбросов определяет скорость метаболизма разлагающих бактерий и скорость потребления кислорода в процессе разложения. При равновесном состоянии системы кислород, который необходим для поддержания жизнедеятельности разлагающих бактерий, продуцируется водорослями и приходит из атмосферы. Предположим, что скорость поступления в систему органических отбросов резко возросла, например, за счет сброса сточных вод. Теперь бактерии имеют дело с намного большим количеством органических отбросов, чем обычно; при большой скорости своего метаболизма они быстро расширяют свою активность па возросших запасах органических веществ. В результате скорость потребления кислорода разлагающими бактериями легко может превысить скорость продуцирования кислорода водорослями (а также скорость его поступления из атмосферы), содержание кислорода в воде приблизится к нулю и система погибнет. Таким образом, скорости отдельных процессов цикла соответствуют естественному равновесию, которое достигается и поддерживается лишь при условии отсутствия внешних вмешательств в систему. Когда в цикл вторгается новый фактор, он не контролируется внутренними самоуправляемыми связями и представляет угрозу для стабильности всей системы.
Экосистемы имеют значительные различия в своих динамических характеристиках и, следовательно, в скоростях, с которыми они реагируют на внешние изменения или движутся к катастрофе. Например, водные экосистемы отличаются более быстрыми кругооборотами, чем почвенные. Так, один ар густо населенной прибрежной полосы моря или ар рыбохозяйственного пруда дает за год приблизительно в 7 раз больше органического вещества, чем ар живы, занятый люцерной. Медленный оборот почвенного цикла объясняется довольно низкой скоростью одного из множества составляющих его звеньев — высвобождения питательных веществ из почвенных запасов органических веществ; этот процесс намного медленнее, чем соответствующий процесс в водных системах.
Величина нагрузки, которую может выдержать экосистема, также есть результат различных ее внутренних взаимосвязей и относительных скоростей реакции на внешние воздействия. Чем сложнее экосистема, тем большие нагрузки она способна выдержать. Вернемся к системе кролики — рыси: если бы рыси имели другой вид пищи, то они пережили бы внезапное исчезновение кроликов. Таким образом, ответвление, открывая альтернативные пути, повышает устойчивость экосистемы к нагрузкам. Большинство экосистем настолько сложны, что их циклы представляют собой не просто круги, а пересекающиеся разветвления, походящие на паутину. Подобно сети, каждый узел которой связан с другими несколькими нитями, наша система более устойчива, чем простой, «не ветвистый» круг нитей, который достаточно разрезать в любом месте, для того чтобы разрушить все сразу. Загрязнение окружающей среды служит сигналом того, что экологические петли где-то разрезаны и, следовательно, система значительно упростилась, став, таким образом, более чувствительной к нагрузкам и ближе к гибели.
Обратные связи в экосистемах часто приводят к усилению важнейших процессов. Например, тот факт, что в пищевых цепочках мелкие организмы поедаются более крупными, а те, в свою очередь, — еще большими, неизбежно приводит к концентрированию определенных элементов окружающей среды в тканях организмов, находящихся в вершине пищевой пирамиды. Для всех мелких организмов характерна более высокая скорость метаболизма, чем у крупных, поэтому количество окисляющейся пищи по отношению к массе тела у них больше. Следовательно, животные, находящиеся в вершине пищевой пирамиды, зависят от потребления значительно большей массы организмов, находящихся в основании пирамиды. Поэтому всякое вещество, которое не участвует в метаболизме, но содержится в организмах нижних звеньев пищевой цепочки, будет накапливаться в тканях представителей верхнего звена. Так, если принять концентрацию ДДТ (который практически не участвует в метаболизме) в почве за единицу, то концентрация его в организме земляного червя составит 10—40 единиц, а в организме глухаря, питающегося земляным червем, — 200 единиц.
Все это следует из простого факта: все связано со всем. Система стабилизируется благодаря своим динамическим самокомпенсирующим свойствам; эти же свойства под влиянием внешних перегрузок могут привести к драматической развязке; сложность экологической системы и скорость ее кругооборота определяют степень нагрузки, которую она может выдержать; экологическая сеть подобна усилителю: небольшой сдвиг в одном месте может вызвать отдаленные, значительные и долговременные последствия.
ВТОРОЙ ЗАКОН ЭКОЛОГИИ: все должно куда-то деваться
Это, разумеется, просто неформальная перефразировка фундаментальною физического закона — материя не исчезает. В применении к экологии этот закон означает, что в природе не существует такой вещи, как «мусор». В любой природной системе экскременты и отбросы одних организмов служат пищей для других. Углекислый газ, который выделяют животные как отходы дыхания, — это превосходное питательное вещество для зеленых растений. Растения «выбрасывают» кислород, который используется животными. Органические отбросы животных служат пищей для разлагающих бактерий. Их отбросы — неорганические вещества, такие как азот, фосфор и углекислый газ, — становятся пищей для водорослей.
Последовательные попытки ответить на вопрос «куда все идет?» могут дать удивительно много информации об экосистемах. Рассмотрим, к примеру, судьбу отдельных предметов домашнего обихода, содержащих ртуть — вещество, которое оказывает, как это недавно выяснилось, серьезное воздействие на окружающую среду. Сухая батарейка, содержащая ртуть, покупается, используется по назначению и «выбрасывается». Но что происходит с нею дальше? Сначала она попадает в мусорный контейнер; затем контейнер отвозят на мусоросжигательную станцию. Здесь ртуть нагревается; она образует ртутные пары, которые выбрасываются через трубу, но ртутные пары токсичны. Ветер подхватывает их, и в конце концов они осаждаются на землю с дождем или снегом. Попав, скажем, в горное озеро, ртуть конденсируется и опускается на дно. Здесь ее перерабатывают бактерии, превращая в метилированную ртуть. Она растворяется в воде и поглощается рыбой; поскольку ртуть не участвует в метаболизме, она накапливается в органах и в мясе рыбы. Рыба вылавливается и съедается человеком, и ядовитая ртуть откладывается в его органах. И так далее.
Прослеживание экологических траекторий — отличное и эффективное средство для того, чтобы опровергнуть распространенное представление о том, что вещи, ставшие бесполезными, просто «исчезают», когда их выбрасывают. Ничто не «исчезает», то или иное вещество просто перемещается с места на место, переходит из одной молекулярной формы в другую, оказывая влияние на жизненные процессы любого организма, частью которого оно становится на некоторое время. Одна из главных причин нынешнего кризиса окружающей среды состоит в том, что огромные количества веществ извлечены из земли, преобразованы в новые соединения и рассеяны в окружающей среде без учета того факта, что «все куда-то девается». В результате пагубно большие количества веществ нередко накапливаются в тех местах, где, по природе, их не должно быть,
ТРЕТИЙ ЗАКОН ЭКОЛОГИИ: природа знает лучше
Насколько мне известно, этот принцип встречает значительное сопротивление, поскольку он противоречит глубоко укоренившейся уверенности в том, что человеческие существа «гадают уникальной компетентностью. Одной из наиболее характерных особенностей современной технологии является представление, что она призвана «улучшить природу» — обеспечить такие продукты питания, одежду, жилище и средства коммуникации, какие природа не может предоставить. В то же время, будучи плохо сформулирован, третий закон экологии утверждает, что любое крупное антропогенное изменение природной системы вредно для нее. Это, пожалуй, крайняя точка зрения, тем не менее, я думаю, что в таком утверждении содержится немалая доля истины, если рассматривать его в определенном контексте.
Я думаю, что для пояснения этого принципа полезно прибегнуть к аналогии. Предположим, вы открываете заднюю крышку ваших часов, закрываете глаза и тыкаете карандашом в рабочий механизм. Почти неизбежно часы будут повреждены. Однако этот результат не абсолютно неизбежен. Существует какая-то вероятность, что часы ходили неправильно и карандаш случайно исправил их. Однако такой исход чрезвычайно маловероятен. Возникает вопрос, почему? Ответ самоочевиден: в часах воплотилось очень многое из того, что технологи называют «исследованием и развитием» (или, более фамильярно, «R и D» *). Это означает, что за долгие годы целая армия часовщиков, каждый из которых учился у своего предшественника, опробовала всевозможные усовершенствования, отбросила то, что не способствовало хорошему функционированию системы в целом, и оставила лучшее. В результате существующий ныне часовой механизм представляет собой продукт тщательного отбора из огромного многообразия возможных вариантов составных частей, конструктивных схем рабочего механизма. Любая попытка наугад изменить что-либо попадет, вероятно, в тот класс несостоятельных или вредных переделок, которые были опробованы и отброшены в процессе эволюции производства часов. Перефразировав наш закон в применении к закону часов, можно сказать: «часовщик знает лучше».
Эта аналогия полна глубокого смысла, когда мы рассматриваем биологические системы. Можно вызвать целый ряд случайных наследственных изменений в живых существах, если подвергать их воздействию таких агентов, как рентгеновское излучение или гамма-излучение, которые увеличивают частоту мутаций. Вообще такое облучение повышает вероятность всех видов мутаций, которые в природе наблюдаются очень редко, и поэтому оно чревато всевозможными изменениями. Но для нас очень существенно то обстоятельство, что почти все мутации, вызываемые упомянутыми излучениями или другими средствами, губительны для организма, и в большинстве случаев настолько, что организм погибает, не успев даже полностью сформироваться.
Другими словами, подобно часам, живой организм, подвергающийся слепым случайным изменениям, почти наверняка будет не улучшен, а сломан. И в обоих случаях объяснение одно — огромное значение «R и D». В каждом живом организме воплощены два или три миллиарда лет «R и D». За это время возникло бесчисленное множество новых особей, организмов, и в каждом случае происходила проверка того, насколько удачными оказались случайные генетические формы. Если изменение снижает жизнеспособность организма, оно убивает его прежде, чем это изменение может быть передано следующим поколениям. Благодаря этому жизнь развила сложный комплекс совместимых деталей, а те возможные конструкции, которые оказались несовместимыми с целым, были отброшены за долгий период эволюции. Таким образом, похоже, что структура организма нынешних живых существ или организация современной природной экосистемы — наилучшая, в том смысле, что они были тщательно отобраны из неудачных вариант» и что любой новый вариант скорее всего будет хуже существующего ныне.
Этот принцип особенно ярко проявляет себя в сфере органической химии. Живое состоит из многих тысяч различных органических соединений, и иногда представляется, что по крайней мере некоторые из них могут быть улучшены, если заменить их неким искусственным вариантом естественной субстанции. Третий закон экологии утверждает, что искусственное введение органических веществ, не существующих в природе, а созданных человеком и тем не менее участвующих в живой системе, скорее всего принесет вред.
Дело в том, что вариации химических веществ, действительно имеющие место в живой материи, намного более ограничены, чем возможные вариации. Яркая иллюстрация: если сделать по одной молекуле всех возможных типов белка, то суммарная их масса превысит массу всей известной вселенной. Очевидно, что фантастически огромное количество видов белка не создается живыми клетками. На основе сказанного выше можно полагать, что многие из этих возможных типов белка были однажды созданы отдельными живыми организмами, но оказались вредными и исчезли ввиду гибели экспериментального организма. По той же причине живые клетки синтезируют жирные кислоты (тип органической молекулы, которая состоит из цепочек атомов углерода различной длины) с четными числами, характеризующими длину углеродной цепочки (например, 4. 6, 8 и т. д. атомов углерода), но не синтезируют кислот с нечетными числами. По-видимому, последние были однажды опробованы и оказались неудачными. Еще один пример — в живой материи чрезвычайно редки органические вещества, которые содержат связанные атомы азота или кислорода. Это должно свидетельствовать о том, что искусственное введение веществ такого типа было бы опасным. И действительно, такие вещества обычно оказываются токсичными и нередко канцерогенными. Я даже предполагаю, что факт отсутствия ДДТ в природе свидетельствует о том, что когда-то в прошлом какие-то злосчастные клетки синтезировали его молекулу — и погибли.
Один из поразительных фактов в химии живых систем — это то, что для любой органической субстанции, вырабатываемой организмами, существует где-то в природе фермент, способный эту субстанцию разложить. Как следствие, ни одно органическое вещество не будет синтезировано, если нет средств к его разложению; к этому вынуждает все та же цикличность. Поэтому, когда человек синтезирует новое органическое вещество, по структуре значительно отличающееся от природных веществ, есть вероятность, что для него не существует разлагающего фермента и это вещество будет накапливаться.
Учитывая эти соображения, я думаю, было бы разумно обратить особое внимание на каждое искусственное органическое вещество, отсутствующее в природе и имеющее сильное воздействие на какой-либо вид организмов, так как впоследствии оно может стать опасным и для других форм жизни. Практически такой взгляд означает, что ко всем искусственным органическим веществам, которые обладают общей биологической активностью, следует относиться так же, как к лекарствам, или, вернее, так, как мы должны относиться к лекарствам, — предусмотрительно, осторожно. Такая осторожность и предусмотрительность, разумеется, невозможны, когда миллионы тонн вещества производятся и широко рассеиваются в экосистеме, где оно может оказать воздействие на огромное количество организмов, находящихся вне сферы нашего наблюдения. Так случилось с детергентами, инсектицидами и гербицидами. Частые катастрофические результаты нашей деятельности придают особую убедительность точке зрения, что «природа знает лучше».
ЧЕТВЕРТЫЙ ЗАКОН ЭКОЛОГИИ: ничто не дается даром.
Как говорит мой опыт, эта мысль настолько хорошо подтверждается в применении к проблемам окружающей среды, что я решил позаимствовать ее из первоисточника — экономики. «Закон» ведет свое происхождение от излюбленной экономистами басни о некоем нефтяном магнате, который решил, что его новоиспеченное богатство нуждается в руководстве экономической науки. И тогда он приказал своим советникам, под угрозой смерти, создать ряд томов, содержащих всю мудрость экономики. Когда тома были готовы, у магната не хватило терпения читать их, и он отдал новый приказ — изложить все экономические знания в одном томе. И так эта история продолжалась (как и все истории подобного рода) до тех пор, пока от советников не потребовали, если они хотят жить, свести всю экономическую науку к одной-единственной фразе*. Таково происхождение закона «ничто не дается даром».
*Имеется в виду аналогичная история с восточным владыкой, который обратился с такой же просьбой к историкам. В результате они свели всю историю человечества к одной-единственной фразе: «Человек рождается, страдает и умирает.- Прим. ред.
В экологии, так же как и в экономике, этот закон призван подчеркнуть, что всякая вещь чего-то стоит. Этот экологический закон объединяет в себе предшествующие три закона. Потому что глобальная экосистема представляет собой единое целое, в рамках которой ничего не может быть выиграно или потеряно и которая не может являться объектом всеобщего улучшения; все, что было извлечено из нее человеческим трудом, должно быть возмещено. Платежа по этому векселю нельзя избежать; он может быть только отсрочен. Нынешний кризис окружающей среды говорит о том, что эта отсрочка слишком затянулась.
Предыдущие страницы были посвящены проведению той мысли, что жизнь на Земле образует сплошную паутину. Была сделана попытка путем логических построений перейти от доступных нам фактов к широким обобщениям. Другими словами, попытка была научной.
Тем не менее, трудно игнорировать то смущающее обстоятельство, что окончательные обобщения, возникшие из всего этого, — четыре 8акона экологии — известны множеству людей и не требуют какого-либо научного анализа или профессиональной подготовки. Сложная паутина связей, пронизывающая всю жизнь, и место в ней человека прекрасно и точно описал в своих поэмах Уолт Уитмен. Довольно хорошее представление о взаимосвязи физических свойств окружающей среды и созданий, которые в ней обитают, можно составить по «Моби Дику»; Марк Твен известен не только как удивительный источник знаний о природе Соединенных Штатов к западу от Миссисипи, но также как острый критик несостоятельности науки, которая оторвалась от жизненной реальности. Как говорит критик Лео Маркс, «всякий, кто знаком с деятельностью американских писателей-классиков (я имею в виду таких, как Купер, Эмерсон, Торо, Мелвилл, Уитмен и Марк Твен), наверное, должен был развить в себе интерес к той области знаний, которую мы недавно научились называть экологией».
К несчастью, этого литературного наследия оказалось недостаточно, чтобы спасти нас от экологического бедствия. Кроме того, каждый американец, занятый в области техники, индустрии, сельского хозяйства или официальной деятельности, непричастный к разрушению природной среды или участвовавший в нем, читал (по крайней мере, некоторые вещи) Купера, Эмерсона, Торо, Мелвилла, Уитмена или Марка Твена. Многие из них к тому же туристы, любители птиц или заядлые рыболовы, и потому в какой-то степени лично осведомлены о тех природных процессах, которые наука экология пытается описать. Тем не менее, большинство из них было застигнуто врасплох кризисом окружающей среды; они, видимо, не смогли понять, что сегодня леса Торо, реки Марка Твена и океаны Мелвилла в опасности.
Растущие миазмы загрязнений помогают нам понять это. Говоря словами Лео Маркса, «теперешний кризис окружающей среды придал истинный, буквальный и даже количественный смысл этому поэтическому образу (человек должен жить в гармонии с природой. — Б. К.)». В этом состоит, быть может, главное значение предпринятой здесь попытки показать, что те простые обобщения, к которым приводит человека тесный контакт с природой, имеют под собой солидную базу в лице фактов и принципов науки экологии. В союзе с наукой эти идеи становятся оружием в борьбе с опасностью, которой грозит природе экологический кризис. В лесах Уолден-Понда или в окрестностях Миссисипи большинство знаний, необходимых для понимания мира природы, может быть получено из собственного опыта. Но для того чтобы понять мир ядерных бомб, смога и загрязненной воды, нужна помощь ученых.