- •Введение
- •1. Основы экономико-математического моделирования
- •Экономико-математическая модель: понятие, свойства, алгоритм построения, классификация
- •Классификация моделей
- •Классификация экономико-математических методов
- •Объекты моделирования
- •Вопросы для самопроверки:
- •Балансовый метод планирования рыночной экономики
- •Модель межотраслевого баланса
- •2.2. Динамическая модель межотраслевого баланса (модель Леонтьева)
- •Вопросы для самопроверки:
- •3. Производственные функции
- •3.1.Виды производных функций и их свойства
- •3.2. Экономико-статистическое моделирование и анализ производственной функции. Практическое задание 1.
- •3.3. Производственные функции и прогнозирование
- •3.4. Прогнозирование экономических показателей. Практическое задание 2.
- •Элементы диалогового окна «Экспоненциальное сглаживание» Входной диапазон
- •Фактор затухания
- •Вывод графика
- •Стандартные погрешности
- •Вопросы для самопроверки:
- •4. Предельный анализ и оптимизация
- •4.1. Оптимизационные задачи или задачи линейного программирования
- •4.2. Пример оптимизации прибыли предприятия методом предельного анализа
- •4.3. Пример оптимизации прибыли предприятия методами математического программирования
- •4.4. Пример оптимизации прибыли при ограничениях на используемые ресурсы
- •4.5. Модели стохастического программирования
- •Вопросы для самопроверки:
- •5. Модели оптимального планирования транспортного типа
- •5.1. Классическая транспортная задача и ее модификации
- •5.2. Пример решения задачи по планированию перевозок. Практическое задание 3
- •5.3. Производственно-транспортные модели
- •5.4. Транспортные модели с промежуточными пунктами
- •5.5. Задача о назначениях
- •Вопросы для самопроверки:
- •6. Модели параметрического программирования
- •Вопросы для самопроверки:
- •7. Элементы теории игр
- •7.1. Матричные игры
- •7.2. Игры двух лиц с нулевой суммой
- •7.3. Смешанные стратегии
- •Очевидным следствием из Теоремы о минимаксе является соотношение
- •7.4. Игры с ненулевой суммой и кооперативные игры
- •7.5. Элементы теории игр п лиц
- •7.6. Игры с природой
- •7.7. Пример решения экономической задачи методами теории игр
- •7.8. Сведение матричной игры к задаче линейного программирования
- •Вопросы для самопроверки:
- •8. Имитационное моделирование. Метод Монте-Карло
- •Вопросы для самопроверки:
- •9. Моделирование систем массового обслуживания
- •9.1. Понятие систем массового обслуживания и их классификация
- •9.2. Моделирование систем массового обслуживания с использованием метода Монте-Карло
- •9.3. Применение элементов теории массового облуживания для решения экономических задач. Практическое задание 4
- •Вопросы для самопроверки:
- •10. Модели оценки эффективности инвестиционных проектов
- •10.1. Расчет абсолютных и относительных показателей эффективности проекта
- •10.2. Применение процессоров электронных таблиц для оценки эффективности инвестиций
- •10.3. Оптимальное планирование портфеля инвестиций
- •Вопросы для самопроверки:
- •Библиографический список
- •Приложение 1. Исходные данные для экономико-статистического моделирования производственных функций
- •Приложение 2. Номинальный объем произведенного ввп в в текущих ценах, млрд.Рублей, до 1998г. - трлн.Рублей
- •Приложение 3. Ввод жилья за счет всех источников финансирования в период 1971-2003 гг., тыс.М2 в год
- •Варианты заданий для выполнения практических заданий
- •Приложение 5. Исходные данные для решения транспортной задачи
- •Приложение 7. Примерный перечень вопроов для проведения экзамена по дисциплине
Вопросы для самопроверки:
1. Определите область применения моделей параметрического программирования.
2. Покажите алгоритм решения задачи параметрического программирования.
7. Элементы теории игр
7.1. Матричные игры
Прикладная теория матричных игр впервые была систематически изложена Дж. фон Нейманом и О. Монгерштерном в 1944 г., хотя отдельные результаты были опубликованы еще в 20-х годах. Эта книга содержала, главным образом, экономические примеры, но в период второй мировой войны она самым серьезным образом заинтересовала военных, которые увидели в этой теории оригинальный метод исследования стратегических решений. Затем главное внимание снова стало уделяться экономическим проблемам.
Предметом теории игр являются такие ситуации, в которых важную роль играют конфликты и совместные действия. Классическими примерами являются ситуации, где, с одной стороны имеется один покупатель, а с другой – продавец (ситуация монополия-монопсония), когда на рынок выходят несколько производителей (олигополия, дуополия). Более сложные ситуации возникают, если имеются объединения или коалиции лиц, участвующих в столкновении интересов.
В итоге, всякая претендующая на адекватность математическая модель социально-экономического явления должна отражать присущие ему черты конфликта, т.е. описывать:
множество заинтересованных сторон (игроков, субъектов, участников, сторон, лиц);
возможные действия каждой из сторон, именуемые также стратегиями или ходами;
интересы сторон, представленные функциями выигрыша (платежа) для каждого из игроков
В теории игр предполагается, что каждый игрок знает свою функцию выигрыша и набор имеющихся в его распоряжении стратегий, а также функции выигрыша и стратегии всех остальных игроков, и в соответствии с этой информацией организует свое поведение.
Формализация содержательного описания конфликта представляет собой его экономическую модель, которая называется игрой.
Теория игр— это математическая дисциплина, исследующая ситуации, в которых принятие решений зависит от нескольких участников. Интересы участников могут быть как антагонистические (полностью противоположные), так и неантагонистические. В последнем случае может исследоваться вопрос о наиболее эффективных совместных действиях (кооперативные игры).
Игра — это упрощенная формализованная модель реальной ситуации, описывающая действия двух или более участников. Предполагается, что известны варианты действий сторон (стратегии), исход игры для каждого участника в случае выбора конкретных действий всеми участниками, степень и порядок информированности каждого участника игры о поведении всех других участников.
Приведем некоторую классификацию игр в зависимости от различных параметров.
Количество игроков. Различаются игры двух лиц (2 участника игры) и игры п лиц (число участников более 2).
Количество стратегий. Если каждый из игроков имеет конечное число возможных стратегий в игре, то игра называется конечной. Если число стратегий хотя бы одного из участников игры бесконечно, то игра называется бесконечной.
Соотношение интересов участников. Игры с нулевой суммой — сумма выигрышей участников всегда равна нулю (антагонистические интересы — антагонистические игры). Игры с ненулевой суммой.
Возможности взаимодействия участников. С этой точки зрения можно рассматривать коалиционные (допускается образование коалиций между участниками), бескоалиционные (коалиции не допускаются) и кооперативные игры (коалиции определены заранее).
Тип функции выигрыша. По данному критерию традиционно рассматриваются такие классы игр, как матричные (игра 2-х лиц, выигрыш одного из игроков (соответственно проигрыш другого) задается в виде матрицы), биматричные (игра 2-х лиц, выигрыш каждого из игроков задается своей матрицей), непрерывные (функция выигрышей является непрерывной функцией на множестве стратегий каждого из игроков), выпуклые (функция выигрышей есть выпуклая функция на множестве стратегий) и так далее.
Количество ходов. Если после одного хода каждого игрока игра заканчивается, и происходит распределение выигрышей, то игра называется одношаговой. В противном случае игра называется многошаговой (позиционной, например, шахматы).
Кроме этого выделяются различные классы игр по иным признакам (статистические, дифференциальные и многие другие). В частности рассматриваются так называемые «игры с природой», т.е. игры, когда в качестве второго игрока выступает не игрок с противоположными интересами, а некоторая сторона с «неопределенными» интересами (природа). В этом случае для поиска оптимальных стратегий используются наряду с принципом гарантированного результата и другие критерии, например Максимакса, Вальда, Сэвиджа, Гурвица, которые рассматриваются далее.
