
- •Введение
- •1. Основы экономико-математического моделирования
- •Экономико-математическая модель: понятие, свойства, алгоритм построения, классификация
- •Классификация моделей
- •Классификация экономико-математических методов
- •Объекты моделирования
- •Вопросы для самопроверки:
- •Балансовый метод планирования рыночной экономики
- •Модель межотраслевого баланса
- •2.2. Динамическая модель межотраслевого баланса (модель Леонтьева)
- •Вопросы для самопроверки:
- •3. Производственные функции
- •3.1.Виды производных функций и их свойства
- •3.2. Экономико-статистическое моделирование и анализ производственной функции. Практическое задание 1.
- •3.3. Производственные функции и прогнозирование
- •3.4. Прогнозирование экономических показателей. Практическое задание 2.
- •Элементы диалогового окна «Экспоненциальное сглаживание» Входной диапазон
- •Фактор затухания
- •Вывод графика
- •Стандартные погрешности
- •Вопросы для самопроверки:
- •4. Предельный анализ и оптимизация
- •4.1. Оптимизационные задачи или задачи линейного программирования
- •4.2. Пример оптимизации прибыли предприятия методом предельного анализа
- •4.3. Пример оптимизации прибыли предприятия методами математического программирования
- •4.4. Пример оптимизации прибыли при ограничениях на используемые ресурсы
- •4.5. Модели стохастического программирования
- •Вопросы для самопроверки:
- •5. Модели оптимального планирования транспортного типа
- •5.1. Классическая транспортная задача и ее модификации
- •5.2. Пример решения задачи по планированию перевозок. Практическое задание 3
- •5.3. Производственно-транспортные модели
- •5.4. Транспортные модели с промежуточными пунктами
- •5.5. Задача о назначениях
- •Вопросы для самопроверки:
- •6. Модели параметрического программирования
- •Вопросы для самопроверки:
- •7. Элементы теории игр
- •7.1. Матричные игры
- •7.2. Игры двух лиц с нулевой суммой
- •7.3. Смешанные стратегии
- •Очевидным следствием из Теоремы о минимаксе является соотношение
- •7.4. Игры с ненулевой суммой и кооперативные игры
- •7.5. Элементы теории игр п лиц
- •7.6. Игры с природой
- •7.7. Пример решения экономической задачи методами теории игр
- •7.8. Сведение матричной игры к задаче линейного программирования
- •Вопросы для самопроверки:
- •8. Имитационное моделирование. Метод Монте-Карло
- •Вопросы для самопроверки:
- •9. Моделирование систем массового обслуживания
- •9.1. Понятие систем массового обслуживания и их классификация
- •9.2. Моделирование систем массового обслуживания с использованием метода Монте-Карло
- •9.3. Применение элементов теории массового облуживания для решения экономических задач. Практическое задание 4
- •Вопросы для самопроверки:
- •10. Модели оценки эффективности инвестиционных проектов
- •10.1. Расчет абсолютных и относительных показателей эффективности проекта
- •10.2. Применение процессоров электронных таблиц для оценки эффективности инвестиций
- •10.3. Оптимальное планирование портфеля инвестиций
- •Вопросы для самопроверки:
- •Библиографический список
- •Приложение 1. Исходные данные для экономико-статистического моделирования производственных функций
- •Приложение 2. Номинальный объем произведенного ввп в в текущих ценах, млрд.Рублей, до 1998г. - трлн.Рублей
- •Приложение 3. Ввод жилья за счет всех источников финансирования в период 1971-2003 гг., тыс.М2 в год
- •Варианты заданий для выполнения практических заданий
- •Приложение 5. Исходные данные для решения транспортной задачи
- •Приложение 7. Примерный перечень вопроов для проведения экзамена по дисциплине
Введение
Современная экономическая теория, как на микро, так и на макроуровне, включает как естественный и необходимый элемент математические методы и модели. Использование математики в экономике позволяет, во-первых, выделить и формально описать наиболее важные, существенные связи экономических переменных и объектов. Во-вторых, из чётко сформулированных исходных данных и соотношений методами дедукции можно получать выводы адекватные изучаемому объекту в той же мере, что и сделанные предпосылки. В-третьих, методы математики и статистики позволяют индуктивным путём получать новые сведения об объекте: оценивать форму и параметры зависимостей его переменных, в наибольшей степени соответствующим имеющимся наблюдениям. Наконец, в-четвёртых, использование математики позволяет точно и компактно излагать положения экономической теории, формулировать её понятия и выводы.
Для изучения различных экономических явлений экономисты используют их упрощённые формальные описания, называемые экономическими моделями. Примерами экономических моделей являются модели потребительского выбора, модели фирмы, модели экономического роста, модели равновесия на товарных и финансовых рынках и многие другие. Строя модели, экономисты выделяют существенные факторы, определяющие исследуемое явление и отбрасывают детали, несущественные для решения поставленной проблемы. Формализация основных особенностей функционирования экономических объектов позволяет оценить возможные последствия воздействия на них и использовать такие оценки в управлении.
Экономические модели позволяют выявить особенности функционирования экономического объекта и на основе этого предсказывать будущее поведение объекта при изменении каких-либо параметров. Предсказание будущих изменений, например, повышение обменного курса, ухудшение экономической конъюнктуры, падение прибыли может опираться лишь на интуицию. Однако при этом могут быть упущены, неправильно определены и неверно оценены важные взаимосвязи экономических показателей, влияющие на рассматриваемую ситуацию. В модели все взаимосвязи переменных могут быть оценены количественно, что позволяет получить более качественный и надёжный прогноз.
Для любого экономического субъекта возможность прогнозирования ситуации означает, прежде всего, получение лучших результатов или избежание потерь, в том числе и в государственной политике.
В целом модели и теории, которые формулируются и решаются с помощью математических методов, представляют собой неотъемлемую составляющую диалога между теорией и практикой. В условиях быстро меняющихся постановок проблем, когда сегодняшние решения завтра уже не пригодны, требуются не только готовые к непосредственному использованию знания, но и умственная динамика, кругозор, компетентность, а также готовность постоянно критически оценивать свои знания.
1. Основы экономико-математического моделирования
Экономико-математическая модель: понятие, свойства, алгоритм построения, классификация
Для изучения различных экономических явлений используются их упрощенные формальные описания, называемые экономическими моделями. Строя модель, экономисты выявляют существенные факторы, определяющие исследуемое явление и отбрасывают несущественные детали.
Модель - это удобное, упрощенное представление существенно важных характеристик объекта или ситуации.
Модели должны отвечать следующим требованиям:
1. Модель должна отображать характерные, существенные черты объекта.
2. Это отображение должно быть выражено в упрощенной форме.
3. Модель должна позволять менять некоторые свои параметры с целью исследования.
4. Модель должна быть более удобной для экспериментов и более дешевой в изготовлении, чем объект.
При построении экономической модели обычно выполняется ряд этапов:
1. Формулируется предмет и цели исследования.
2. В рассматриваемой экономической системе выделяются структурные или функциональные элементы и определяются их наиболее важные характеристики.
3. Дается словесное описание взаимосвязей между элементами модели.
4. Вводятся символические обозначения для учитываемых характеристик объекта моделирования и формализуются взаимосвязи между ними. Таким образом, строится математическая модель.
5.Проводятся расчеты по математической модели, и выполняется анализ полученного решения.