Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Годфруа Ж. Что такое психология Т.2.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
24.19 Mб
Скачать

Теоретические частоты (т)

Метод χ2 состоит в том, что оценивают, насколько сходны между собой распределения эмпирических и теоретических частот. Если разни­ца между ними невелика, то можно полагать, что отклонения эмпириче­ских частот от теоретических обусловлены случайностью. Если же, напротив, эти распределения будут достаточно разными, можно будет считать, что различия между ними значимы и существует связь между действием независимой переменной и распределением эмпирических частот.

Для вычисления χ2 определяют разницу между каждой эмпирической

и соответствующей теоретической частотой по формуле

а затем результаты, полученные по всех таких сравнениях, складывают

В нашем случае все это можно представить следующим образом:

Э

Т

Э-Т

(Э-Т) 2

Наркотик ухудшение

13

9

+4

16

1,77

Наркотик улучшение

2

6

-4

16

2,66

Без наркотика, ухудшение

5

6

-4

16

1,77

Без наркотика, улучшение

10

6

+4

16

2,66

8,66

Для расчета числа степеней свободы число строк в табл. 2 (в конце приложения Б) за вычетом единицы умножают на число столбцов за вычетом единицы. Таким образом, в нашем случае число степеней свободы равно (2 — 1)·(2 — 1) = 1.

Табличное значение χ 2 (см. табл. 2 в дополнении Б. 5) для уровня значимости 0,05 и 1 степени свободы составляет 3,84. Поскольку вычис­ленное нами значение χ 2 намного больше, нулевую гипотезу можно считать опровергнутой. Значит, между употреблением наркотика и глазодвигательной координацией действительно существует связь1.

Критерий знаков (биномиальный критерий)

Критерий знаков - это еще один непараметрический метод, позволяющий легко проверить, повлияла ли независимая переменная на выполнение задания испытуемыми.

При этом методе сначала подсчитывают число испытуемых, у которых результаты снизились, а затем сравни­вают его с тем числом, которого можно было ожидать на основе чистой случайности (в нашем случае вероятность случайного события 1:2). Далее определяют разницу между этими двумя числами, чтобы выяс­нить, насколько она достоверна.

При подсчетах результаты, свидетельствующие о повышении эффек­тивности, берут со знаком плюс, а о снижении -со знаком минус; случаи отсутствия разницы не учитывают.

Расчет ведется по следующей формуле:

где Х-сумма «плюсов» или сумма «минусов»;

п/2- число сдвигов в ту или в другую сторону при чистой случайности

(один шанс из двух1);

0,5-поправочный коэффициент, который добавляют к X, если Х < n/2,

или вычитают, если Х > n/2.

Если мы сравним в нашем опыте результативность испытуемых до

воздействия (фон) и после воздействия, то получим

Опытная группа

Фон

12

21

10

15

15

19

17

14

13

11

20

15

15

14

17

После воздействия

8

20

6

8

17

10

10

9

7

8

14

13

16

11

12

Знак

-

-

-

-

+

-

-

-

-

-

-

-

+

-

-

Итак, в 13 случаях результаты ухудшились, а в 2-улучшились. Теперь нам остается вычислить Z для одного из этих двух значений X:

либо

либо

Из таблицы значений Z можно узнать, что Z для уровня значимости 0,05 составляет 1,64. Поскольку полученная нами величина Z оказалась выше табличной, нулевую гипотезу следует отвергнуть; значит, под действием независимой переменной глазодвигательная координация действительно ухудшилась.

Критерий знаков особенно часто используют при анализе данных, получаемых в исследованиях по парапсихологии. С помощью этого критерия легко можно сравнить, например, число так называемых телепатических или психокинетических реакций (X) (см. досье 5.1) с числом сходных реакций, которое могло быть обусловлено чистой случайностью (n/2).

Другие непараметрические критерии

Существуют и другие непараметрические критерии, позволяющие проверять гипотезы с минимальным количеством расчетов.

Критерий рангов позволяет проверить, является ли порядок следова­ния каких-либо событий или результатов случайным, или же он связан с действием какого-то фактора, не учтенного исследователем. С по­мощью этого критерия можно, например, определить, случаен ли порядок чередования мужчин и женщин в очереди. В нашем опыте этот критерий позволил бы узнать, не чередуются ли плохие и хорошие результаты каждого испытуемого опытной группы после воздействия каким-то определенным образом или не приходятся ли хорошие резуль­таты в основном на начало или конец испытаний.

При работе с этим критерием сначала выделяют такие последова­тельности, в которых подряд следуют значения меньше медианы, и такие, в которых подряд идут значения больше медианы. Далее по таблице распределения R (от англ. runs- последовательности) проверя­ют, обусловлены ли эти различные последовательности только случай­ностью.

При работе с порядковыми данными1 используют такие непараметри­ческие тесты, как тест U (Манна-Уитни) и тест Т Вилкоксона. Тест U позволяет проверить, существует ли достоверная разница между двумя независимыми выборками после того, как сгруппированные данные этих выборок классифицируются и ранжируются и вычисляется сумма рангов для каждой выборки. Что же касается критерия Т, то он используется для зависимых выборок и основан как на ранжировании, так и на знаке различий между каждой парой данных.

Чтобы показать применение этих критериев на примерах, потребова­лось бы слишком много места. При желании читатель может подробнее ознакомиться с ними по специальным пособиям.