Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химическая технология вяжущих веществ.doc
Скачиваний:
16
Добавлен:
01.07.2025
Размер:
20.6 Mб
Скачать

1 − Гальванометр дифференциальной термопары;

2 − Гальванометр простой термопары (стрелками

показано направление термотоков);

3 − Исследуемое вещество; 4 − эталон

При одинаковом нагреве горячих спаев дифференциальной термопары возникающие в ней токи будут направлены навстречу друг другу и при их равенстве компенсироваться. В этом случае гальванометр дифференциальной термопары не покажает никакого отклонения (t = 0). Дифференциальная запись на термограмме получится в виде прямой линии, параллельной оси времени (нулевая или базисная линия). При проявлении теплового эффекта в веществе возникнет разность температур между исследуемым веществом и эталоном. Эндометрические эффекты отражаются на дифференциальной записи резкими отклонениями кривой в сторону оси абсцисс (вниз), а при экзоэффекте − в обратном направлении (вверх) (4.3, кривая ДТА).

Рис. 4. 3. Кривые дифференциальной (ДТА) и простой (ТА) записи:

t1 и t2 − температуры термоэффектов

Одна лишь дифференциальная запись не может быть полноценной, так как, обнаруживая даже самые незначительные термическое эффекты, она не позволяет определить температуры этих процессов. Поэтому ее комбинируют с простой записью (кривая ТА), получая таким образом одновременно две: простую − для определения температур эффектов и дифференциальную − для увеличения чувствительности установки. Для определения температур термоэффектов проецируют начало и максимумы отклонения дифференциальной записи на кривую температур (кривую простой записи).

Таким образом, такая запись является комбинацией простой (ТА) и дифференциальной (ДТА) записей. Одновременно с записью ТА и ДТА в современных приборах осуществляется запись еще двух кривых − термогравиметрической ТГ и дифференциальной термогравиметрической ДТГ. Кривая ТГ фиксирует величину потерь массы вещества при фазовых превращениях, а ДТГ − скорость изменения массы. Наличие таких кривых способствует интерпретации фазовых превращений в веществе, идущих с изменением массы.

Тепловые эффекты в веществе при его нагревании сопровождаются появлением на кривой ДТА пиков, площадь которых пропорциональна величине теплового эффекта (при одинаковых навесках вещества).

В качестве примера приведена дериватограмма карбоната кальция (рис. 4.4).

Рис. 4.4. Дериватограмма СаСО3

Основной прибор для получения кривых ДТА − дериватограф.

Для проведения дифференциального термическоо анализа образцы готовятся в виде порошка. Тонина помола − 4000−6000 см2/г (просеивается через сито № 063). Современные приборы, используемые для термического анализа, позволяют исследовать небольшое количество образца ( 10 мг, объем сухого порошка  10 мм3, объем жидкости  0,01 мкл) в широком диапазоне температур до 1600С (дифференциальная сканирующая калориметрия) и 2400С (термогравиметрический анализ) при скоростях нагревания от 10−3 до 20−40С/мин и точности установления температуры ± 0,1С.

4.2. Рентгенографический анализ

В настоящее время рентгенофазовый анализ (рентгенография, или дифракция рентгеновских лучей) является самым распространенным из дифракционных методов анализа. Следует отметить, что дифракционные методы применяются для изучения структуры не только твердых кристаллических веществ, но и жидкостей, и стекол. Жидкости и стекла, в которых существует определенная флуктирующая статистическая упорядоченность структурных элементов, также характеризуются неравномерностью рассеивания. При этом количество и резкость максимумов возрастает по мере перехода вещества в кристаллическое состояние.

Рентгенография основана на получении и анализе дифракционной картины, возникающей в результате интерференции рентгеновских лучей, рассеянных электронами атомов облучаемого объекта.

Явление интерференции рентгеновских лучей, рассеяных кристаллом, приводит к таким же результатам, какие дает зеркальное отражение лучей от атомных плокостей кристалла рис. 4.5.

Рис. 4.5. Отражение рентгеновских лучей

от атомных плоскостей кристалла:

 − угол скольжения (брегговский угол);

 − угол падения; d1, d2 − межплоскостные расстояния

Отраженные лучи распространяются в единой фазе (интенсивность возрастает), если соблюдается уравнение Вульфа − Брегга:

n ∙  = 2d sin,

где n − порядок отражения;  − длина волны рентеновского луча; d − расстояние между атомными плоскостями кристалла;  − угол скольжения пучка лучей.

При изменении угла скольжения, когда уравнение Вульфа − Брегга не соблюдается, отраженные лучи распространяются в разных фазах и гасят друг друга.

Очевидно, что максимумы интенсивности отраженных лучей будут наблюдаться при различных значениях угла  для семейства плоских сеток с разными значениями d. Каждое кристаллическое вещество имеет индивидуальный набор семейств плоских сеток, следствием чего является индивидуальность дифракционной картины, т. е. распределение интенсивностей отражения в зависимости от значения угла . Поэтому запись дифрактограммы и ведется в координатах I −  (интенсивность отраженных лучей − угол скольжения).

Для получения пучка рентгеновских лучей используют рентгеновские трубки (рис. 4.6), в которых рентгеновские лучи возникают в результате торможения электронов на металлическом аноде. Поток электронов, испускаемых вольфрамовой нитью и ускоренных в поле напряжения 30 кВ, бомбардирует металлическую мишень − анод рентгеновской трубки (из меди, кобальта или железа). Энергия первичных электронов достаточна для выбивания 1−S электрона (K − оболочка меди, рис. 4.7).

Рис. 4.6. Схема рентгеновской трубки: