
- •М. И. Кузьменков, о. Е. Хотянович химическая технология вяжущих веществ
- •Оглавление
- •Введение
- •Глава 1 гипсовые вяжущие
- •1.1. Классификация гипсовых вяжущих веществ
- •Классификация гипсовых вяжущих и области их применения
- •1.2. Свойства гипсовых вяжущих веществ
- •Виды гипсовых вяжущих в зависимости от сроков схватывания
- •Виды химических добавок для гипсовых вяжущих
- •1 Пористость; 2 водопоглощение; 3 средняя плотность;
- •4 Прочность на сжатие
- •Минимальный предел прочности каждой марки гипсового вяжущего
- •Виды гипсовых вяжущих в зависимости от тонкости помола
- •Основные свойства супергипса
- •Технические требования к гипсовым вяжущим, используемым для технических целей
- •Свойства высокообжиговых гипсовых вяжущих
- •1.3. Сырье для производства гипсовых вяжущих
- •Физико-механические свойства гипса и ангидрита
- •Сорта гипсового и гипсоангидритового камня
- •Химический состав фосфогипса из апатитового концентрата
- •1.4. Физико-химические основы процесса дегидратации CaSo4 · 2h2o
- •1.4.1. Равновесие реакции дегидратации CaSo4 · 2h2o.
- •Значения коэффициентов в уравнениях
- •Значения и для сульфатов кальция, кДж/моль
- •Значения энергии Гиббса реакций дегидратации CaSo4 · 2h2o
- •Зависимость энергии Гиббса (Дж/моль) от температуры реакций дегидратации гипса CaSo4 · 2h2o
- •1.4.2. Кинетика реакции дегидратации CaSo4 · 2h2o
- •1.4.3. Механизм процесса дегидратации CaSo4 · 2h2o.
- •Характеристика модификаций гипсовых вяжущих
- •1.5. Технология производства неводостойких (воздушных) гипсовых вяжущих веществ
- •Классификация технологических схем производства гипсовых вяжущих веществ по условиям тепловой обработки
- •1.5.1. Технология производства строительного гипса
- •1.5.2. Технология производства строительного гипса с использованием котлов непрерывного действия
- •1.5.3. Технология производства строительного гипса с использованием барабанных дегидраторов
- •1.5.4. Технология производства строительного гипса в аппаратах совмещенного помола и термообработки
- •1.5.5. Технология производства строительного гипса в котлах-дегидраторах кипящего слоя
- •1 Ленточный конвейер; 2 бункер гипсового щебня; 3 тарельчатый питатель;
- •4 Шахтная мельница; 5 теплогенератор; 6 батарея из 4 циклонов; 7 батарея
- •15 Дроссельная заслонка; 17 электрофильтр; 18 вентилятор; 20 элеватор;
- •1.5.6. Технология производства строительного гипса из фосфогипса
- •1.5.7. Технология производства строительного гипса из синтетического дигидрата сульфата кальция
- •1.6. Производство высокопрочного гипса
- •1.6.1. Технология производства высокопрочного гипса с дегидратацией и сушкой материала в раздельных аппаратах
- •1.6.2. Технология производства высокопрочного гипса с применением горизонтального автоклава
- •1.6.3. Технология производства высокопрочного гипса из фосфогипса
- •1.6.4. Технология производства высокопрочного гипса в жидких средах
- •1.7. Производство высокообжиговых гипсовых вяжущих
- •1.8. Получение гипсовых вяжущих веществ в лабораторных условиях
- •1.8.1. Исследование процесса получения строительного гипса
- •1 Нагревательный элемент; 2 емкость; 3 сосуд; 4 минеральное
- •1.8.2. Получение высокопрочного гипсового вяжущего
- •Растворы солей для получения высокопрочного гипса
- •1.8.3. Изучение условий получения высокообжиговых гипсовых вяжущих
- •1.8.4. Изучение свойств гипсовых вяжущих. Стандарты
- •1 Цилиндр; 2 стеклянная пластинка;
- •3 Концентрические окружности
- •1 Станина; 2 стержень; 3 шкала; 4 игла; 5 пестик;
- •6 Указатель; 7 винт; 8 кольцо; 9 стеклянная пластина
- •1 Нижняя плита пресса; 2 пластинки; 3 верхняя
- •Глава 2 Известковые вяжущие
- •2.1. Классификация известковых вяжущих
- •Виды строительной извести
- •Свойства воздушной извести
- •2.2. Сырье для производства воздушной извести
- •Доломит
- •Состав и некоторые свойства мелового сырья основных месторождений Республики Беларусь
- •2.3. Физико-химические основы термического разложения карбонатного сырья
- •2.3.1. Термодинамика диссоциации СаСо3.
- •4 Призма с основанием 25 мм, высотой 20 мм
- •2.3.2. Кинетика процесса диссоциации СаСо3
- •2.3.3. Механизм процесса диссоциации СаСо3
- •2.3.4. Влияние примесей на процесс декарбонизации карбонатного сырья
- •2.3.5. Технология производства строительной извести в шахтных печах
- •2.3.6. Пути совершенствования производства строительной извести из известняка
- •1 Холодильник; 2 шахта; 3, 7, 8 камеры;
- •5, 12, 17, 20 Переточные устройства; 6 люк;
- •9 Загрузочный патрубок; 10 – патрубок для отвода
- •Технико-экономическая характеристика известковых печей
- •2.3.7. Производство строительной извести по мокрому способу из влажного мела
- •2.3.8. Технология производства строительной извести по сухому способу из влажного мела
- •2.3.9. Технология производства извести из влажного мела в скоростном обжиговом агрегате
- •1 Элеватор; 2, 3 циклоны-подогреватели III ступени;
- •6, 7, 8 Циклонные холодильники
- •2.3.10. Технология производства гидратной и молотой извести
- •2.3.11. Магнезиальная известь и ее применение
- •2.4. Методология получения известковых вяжущих в лабораторных условиях
- •2.4.1. Анализ карбонатного сырья
- •2.4.2. Изучение условий получения строительной извести по мокрому способу
- •2.4.3. Исследование процесса получения строительной извести по сухому способу
- •2.4.4. Получение гидратной извести
- •2.4.5. Изучение условий получения гидравлической извести
- •2.4.6. Получение магнезиальной извести
- •2.4.7. Изучение свойств известковых вяжущих. Стандарты
- •Масса 1 мл со2 в зависимости от температуры и атмосферного давления
- •Давление водяных паров над насыщенным раствором NaCl в зависимости от температуры
- •1 Осевший конус раствора; 2 линейка с делениями;
- •3 Металлическая линейка; 4 форма-конус
- •Глава 3 портландцемент
- •3.1. Определения, классификация цементов. Стандарты
- •Механические и физические требования к портландцементу в зависимости от класса
- •3.2. Свойства портландцемента
- •Требования к маркам портландцемента и его разновидностям (гост 10178–85)
- •3.3. Состав портландцемента
- •Минералогический состав клинкеров
- •Двухкальциевого силиката
- •Относительная прочность клинкерных минералов
- •3.4. Структура цементного клинкера и методы идентификации фаз
- •3.5. Расчет минералогического состава клинкера и сырьевой смеси для его получения
- •3.6. Сырьевые материалы
- •3.7. Топливо в цементной промышленности
- •3.8. Общая характеристика технологических схем производства портландцемента
- •3.9. Физико-химические основы важнейших технологических стадий производства портландцемента
- •3.9.1. Общая характеристика твердофазовых реакций
- •3.9.2. Кинетика твердофазовых реакций
- •3.9.3. Минералообразование на стадии твердофазовых реакций
- •3.9.4. Минералообразование на стадии жидкофазового спекания
- •3.9.5. Процессы, происходящие в зоне охлаждения клинкера
- •3.9.6. Кольцеообразование во вращающейся печи и способы его предотвращения
- •3.10. Технология производства портландцементного клинкера по мокрому способу
- •3.10.1. Добыча и транспортировка сырья
- •3.10.2. Технология приготовления сырьевого шлама
- •3.10.3. Обжиг цементного клинкера по мокрому способу
- •3.11. Технолногия прозводства портландцементного клинкера по сухому способу
- •3.11.1. Технология приготовления сырьевой муки
- •3.11.2. Обжиг цементного клинкера по сухому способу
- •3.12. Технологический процесс обжига цементного клинкера из переувлажненного сырья
- •3.13. Помол цемента
- •3.13.1. Краткие теоретические основы измельчения
- •3.13.2. Технология помола цементного клинкера с добавками по замкнутому циклу
- •Физические свойства клинкерных минералов
- •3.14. Методология получения портландцемента в лабораторных условиях
- •3.14.1. Расчет, получение и изучение свойств сырьевой смеси для цементного клинкера
- •Химический состав исходных компонентов
- •Химический состав сырьевой смеси и клинкера
- •3.14.2. Получение цементного клинкера
- •3.14.3. Исследование прцесса помола цемента
- •3.14.4. Определение физико-механических свойств портландцемента
- •Плотности цемента
- •1 Кулачок; 2 столик; 3 шток;
- •4 Станина; 5 форма-конус с центрирующим
- •1 Стержень; 2 рукоятка
- •Глава 4 физико-химические Методы исследования минеральных вяжущих веществ
- •4.1. Дифференциальный термический анализ
- •1 − Гальванометр дифференциальной термопары;
- •2 − Гальванометр простой термопары (стрелками
- •3 − Исследуемое вещество; 4 − эталон
- •4.2. Рентгенографический анализ
- •1 − Анод; 2 − вольфрамовая нить; 3 − окно
- •1 − Рентгеновская трубка; 2 − диафрагма;
- •3 − Образец; 4 − гониометр; 5 − счетчик;
- •6 − Окружность движения счетчика
- •4.3. Оптическая и электронная микроскопия
- •4.4. Инфракрасная спектроскопия
- •Заключение
- •Литература
- •Химическая технология вяжущих веществ
- •220006. Минск, Свердлова, 13а.
- •220006. Минск, Свердлова, 13.
Глава 4 физико-химические Методы исследования минеральных вяжущих веществ
4.1. Дифференциальный термический анализ
Дифференциальный термический анализ является одним из наиболее высокочувствительных и современных методов изучения фазовых превращений, происходящих в ситемах или веществах при нагревани или охлаждении.
Большинство физических и химических процессов сопровождается выделением или поглощением тепла. Процессы могут быть обратимыми или необратимыми. Тепловые эффекты обратимых процессов (например, плавление − кристаллизация, энантиотропные полиморфные превращения и др.) обнаруживаются как в режимах нагревания, так и в режимах охлаждения, а тепловые эффекты необратимых процессов (переход метастабильных фаз в стабильные, распад твердых растворов и т. п.) только в режиме нагревания.
При классическом методе термического анализа (ТА) осуществляется непрерывная регистрация тепловых эффектов с помощью измерения температуры вещества через равные промежутки времени при нагревании или охлаждении с постоянной скоростью изменения температуры окружающей среды. Запись производится в координатах «температура вещества t − время ». В случае возникновения в веществе того ли иного превращения заметно меняется скорость его нагревания или охлаждения за счет выделения или поглощения тепла.
Если при нагреве (охлаждении) вещества не происходит превращений, сопровождающихся тепловыми эффектами, то термограмма имеет вид плавной наклонной линии. В случае возникновения при нагреве эндо- или экзотермического превращения образец нагревается медленнее или быстрее окружающей среды. На термограмме это соответствует отклонению линии от ее первоначального направления в сторону оси абсцисс (эндоэффект) или в сторону оси ординат (экзоэффект), рис. 4.1.
Рис. 4.1. Кривые нагревания
с эндо- 1 и экзоэффектом 2
Метод регистрации тепловых процессов в координатах «температура − время» (простая запись) недостаточно чувствителен. Особенно это относится к силикатным системам, где фазовые превращения сопровождаются малыми тепловыми эффектами (например, плавление − кристаллизация). Поэтому с целью увеличения чувствительности был разработан метод дифференциального термического анализа (ДТА), который имеет большой диапазон возможностей, его используют для решения следующих задач:
− идентификация отдельных химических соединений (по температурам плавления, полиморфных переходов и термического разложения);
− качественный, а в некоторых случаях и количественный анализ механических смесей нескольких веществ;
− измерение температуры фазовых переходов индивидуальных веществ и систем, а также построение на их основе диаграмм состояния (диаграмм плавкости);
− установление кинетических и термодинамических параметров фазовых и химических превращений;
− определение теплофизических свойств веществ.
При проведении дифференциального термического анализа в процессе нагревания или охлаждения регистрируется разность температур между изученным веществом и эталоном. В качестве эталона выступает вещество, не имеюшее фазовых превращений в исследуемом интервале температур. Обычно при анализе неметиллических веществ в качестве эталонного вещества используют прокаленные при 1300С оксид магния или оксид алюминия, а для низкотемпературных анализов − NaCl и KCl. Эталон и исследуемое вещество помещают одновременно в одну печь, чтобы они находились в одинаковом температурном поле.
Дифференциальная запись осуществляется с помощью двух совершенно одинковых термопар, соединенных между собой одинаковыми проволоками (рис. 4.2).
Рис. 4.2. Схема дифференциальной термопары: