- •М. И. Кузьменков, о. Е. Хотянович химическая технология вяжущих веществ
- •Оглавление
- •Введение
- •Глава 1 гипсовые вяжущие
- •1.1. Классификация гипсовых вяжущих веществ
- •Классификация гипсовых вяжущих и области их применения
- •1.2. Свойства гипсовых вяжущих веществ
- •Виды гипсовых вяжущих в зависимости от сроков схватывания
- •Виды химических добавок для гипсовых вяжущих
- •1 Пористость; 2 водопоглощение; 3 средняя плотность;
- •4 Прочность на сжатие
- •Минимальный предел прочности каждой марки гипсового вяжущего
- •Виды гипсовых вяжущих в зависимости от тонкости помола
- •Основные свойства супергипса
- •Технические требования к гипсовым вяжущим, используемым для технических целей
- •Свойства высокообжиговых гипсовых вяжущих
- •1.3. Сырье для производства гипсовых вяжущих
- •Физико-механические свойства гипса и ангидрита
- •Сорта гипсового и гипсоангидритового камня
- •Химический состав фосфогипса из апатитового концентрата
- •1.4. Физико-химические основы процесса дегидратации CaSo4 · 2h2o
- •1.4.1. Равновесие реакции дегидратации CaSo4 · 2h2o.
- •Значения коэффициентов в уравнениях
- •Значения и для сульфатов кальция, кДж/моль
- •Значения энергии Гиббса реакций дегидратации CaSo4 · 2h2o
- •Зависимость энергии Гиббса (Дж/моль) от температуры реакций дегидратации гипса CaSo4 · 2h2o
- •1.4.2. Кинетика реакции дегидратации CaSo4 · 2h2o
- •1.4.3. Механизм процесса дегидратации CaSo4 · 2h2o.
- •Характеристика модификаций гипсовых вяжущих
- •1.5. Технология производства неводостойких (воздушных) гипсовых вяжущих веществ
- •Классификация технологических схем производства гипсовых вяжущих веществ по условиям тепловой обработки
- •1.5.1. Технология производства строительного гипса
- •1.5.2. Технология производства строительного гипса с использованием котлов непрерывного действия
- •1.5.3. Технология производства строительного гипса с использованием барабанных дегидраторов
- •1.5.4. Технология производства строительного гипса в аппаратах совмещенного помола и термообработки
- •1.5.5. Технология производства строительного гипса в котлах-дегидраторах кипящего слоя
- •1 Ленточный конвейер; 2 бункер гипсового щебня; 3 тарельчатый питатель;
- •4 Шахтная мельница; 5 теплогенератор; 6 батарея из 4 циклонов; 7 батарея
- •15 Дроссельная заслонка; 17 электрофильтр; 18 вентилятор; 20 элеватор;
- •1.5.6. Технология производства строительного гипса из фосфогипса
- •1.5.7. Технология производства строительного гипса из синтетического дигидрата сульфата кальция
- •1.6. Производство высокопрочного гипса
- •1.6.1. Технология производства высокопрочного гипса с дегидратацией и сушкой материала в раздельных аппаратах
- •1.6.2. Технология производства высокопрочного гипса с применением горизонтального автоклава
- •1.6.3. Технология производства высокопрочного гипса из фосфогипса
- •1.6.4. Технология производства высокопрочного гипса в жидких средах
- •1.7. Производство высокообжиговых гипсовых вяжущих
- •1.8. Получение гипсовых вяжущих веществ в лабораторных условиях
- •1.8.1. Исследование процесса получения строительного гипса
- •1 Нагревательный элемент; 2 емкость; 3 сосуд; 4 минеральное
- •1.8.2. Получение высокопрочного гипсового вяжущего
- •Растворы солей для получения высокопрочного гипса
- •1.8.3. Изучение условий получения высокообжиговых гипсовых вяжущих
- •1.8.4. Изучение свойств гипсовых вяжущих. Стандарты
- •1 Цилиндр; 2 стеклянная пластинка;
- •3 Концентрические окружности
- •1 Станина; 2 стержень; 3 шкала; 4 игла; 5 пестик;
- •6 Указатель; 7 винт; 8 кольцо; 9 стеклянная пластина
- •1 Нижняя плита пресса; 2 пластинки; 3 верхняя
- •Глава 2 Известковые вяжущие
- •2.1. Классификация известковых вяжущих
- •Виды строительной извести
- •Свойства воздушной извести
- •2.2. Сырье для производства воздушной извести
- •Доломит
- •Состав и некоторые свойства мелового сырья основных месторождений Республики Беларусь
- •2.3. Физико-химические основы термического разложения карбонатного сырья
- •2.3.1. Термодинамика диссоциации СаСо3.
- •4 Призма с основанием 25 мм, высотой 20 мм
- •2.3.2. Кинетика процесса диссоциации СаСо3
- •2.3.3. Механизм процесса диссоциации СаСо3
- •2.3.4. Влияние примесей на процесс декарбонизации карбонатного сырья
- •2.3.5. Технология производства строительной извести в шахтных печах
- •2.3.6. Пути совершенствования производства строительной извести из известняка
- •1 Холодильник; 2 шахта; 3, 7, 8 камеры;
- •5, 12, 17, 20 Переточные устройства; 6 люк;
- •9 Загрузочный патрубок; 10 – патрубок для отвода
- •Технико-экономическая характеристика известковых печей
- •2.3.7. Производство строительной извести по мокрому способу из влажного мела
- •2.3.8. Технология производства строительной извести по сухому способу из влажного мела
- •2.3.9. Технология производства извести из влажного мела в скоростном обжиговом агрегате
- •1 Элеватор; 2, 3 циклоны-подогреватели III ступени;
- •6, 7, 8 Циклонные холодильники
- •2.3.10. Технология производства гидратной и молотой извести
- •2.3.11. Магнезиальная известь и ее применение
- •2.4. Методология получения известковых вяжущих в лабораторных условиях
- •2.4.1. Анализ карбонатного сырья
- •2.4.2. Изучение условий получения строительной извести по мокрому способу
- •2.4.3. Исследование процесса получения строительной извести по сухому способу
- •2.4.4. Получение гидратной извести
- •2.4.5. Изучение условий получения гидравлической извести
- •2.4.6. Получение магнезиальной извести
- •2.4.7. Изучение свойств известковых вяжущих. Стандарты
- •Масса 1 мл со2 в зависимости от температуры и атмосферного давления
- •Давление водяных паров над насыщенным раствором NaCl в зависимости от температуры
- •1 Осевший конус раствора; 2 линейка с делениями;
- •3 Металлическая линейка; 4 форма-конус
- •Глава 3 портландцемент
- •3.1. Определения, классификация цементов. Стандарты
- •Механические и физические требования к портландцементу в зависимости от класса
- •3.2. Свойства портландцемента
- •Требования к маркам портландцемента и его разновидностям (гост 10178–85)
- •3.3. Состав портландцемента
- •Минералогический состав клинкеров
- •Двухкальциевого силиката
- •Относительная прочность клинкерных минералов
- •3.4. Структура цементного клинкера и методы идентификации фаз
- •3.5. Расчет минералогического состава клинкера и сырьевой смеси для его получения
- •3.6. Сырьевые материалы
- •3.7. Топливо в цементной промышленности
- •3.8. Общая характеристика технологических схем производства портландцемента
- •3.9. Физико-химические основы важнейших технологических стадий производства портландцемента
- •3.9.1. Общая характеристика твердофазовых реакций
- •3.9.2. Кинетика твердофазовых реакций
- •3.9.3. Минералообразование на стадии твердофазовых реакций
- •3.9.4. Минералообразование на стадии жидкофазового спекания
- •3.9.5. Процессы, происходящие в зоне охлаждения клинкера
- •3.9.6. Кольцеообразование во вращающейся печи и способы его предотвращения
- •3.10. Технология производства портландцементного клинкера по мокрому способу
- •3.10.1. Добыча и транспортировка сырья
- •3.10.2. Технология приготовления сырьевого шлама
- •3.10.3. Обжиг цементного клинкера по мокрому способу
- •3.11. Технолногия прозводства портландцементного клинкера по сухому способу
- •3.11.1. Технология приготовления сырьевой муки
- •3.11.2. Обжиг цементного клинкера по сухому способу
- •3.12. Технологический процесс обжига цементного клинкера из переувлажненного сырья
- •3.13. Помол цемента
- •3.13.1. Краткие теоретические основы измельчения
- •3.13.2. Технология помола цементного клинкера с добавками по замкнутому циклу
- •Физические свойства клинкерных минералов
- •3.14. Методология получения портландцемента в лабораторных условиях
- •3.14.1. Расчет, получение и изучение свойств сырьевой смеси для цементного клинкера
- •Химический состав исходных компонентов
- •Химический состав сырьевой смеси и клинкера
- •3.14.2. Получение цементного клинкера
- •3.14.3. Исследование прцесса помола цемента
- •3.14.4. Определение физико-механических свойств портландцемента
- •Плотности цемента
- •1 Кулачок; 2 столик; 3 шток;
- •4 Станина; 5 форма-конус с центрирующим
- •1 Стержень; 2 рукоятка
- •Глава 4 физико-химические Методы исследования минеральных вяжущих веществ
- •4.1. Дифференциальный термический анализ
- •1 − Гальванометр дифференциальной термопары;
- •2 − Гальванометр простой термопары (стрелками
- •3 − Исследуемое вещество; 4 − эталон
- •4.2. Рентгенографический анализ
- •1 − Анод; 2 − вольфрамовая нить; 3 − окно
- •1 − Рентгеновская трубка; 2 − диафрагма;
- •3 − Образец; 4 − гониометр; 5 − счетчик;
- •6 − Окружность движения счетчика
- •4.3. Оптическая и электронная микроскопия
- •4.4. Инфракрасная спектроскопия
- •Заключение
- •Литература
- •Химическая технология вяжущих веществ
- •220006. Минск, Свердлова, 13а.
- •220006. Минск, Свердлова, 13.
3.6. Сырьевые материалы
Для введения необходимых оксидов СаО, SiO2, Al2O3 и Fe2O3 в состав цементного клинкера используют в основном природное минеральное сырье известняки или мела, а также различные глины.
Карбонатное сырье было охарактеризовано во второй главе, поэтому здесь оно не рассматривается.
На сырье, используемое для производства цемента, стандартов не существует, есть только определенные ограничения по содержанию MgO и SO3.
Диоксид кремния и оксид алюминия в сырьевую смесь вводят через глинистое сырье. В общем случае глина состоит из глинистой, неглинистой частей и органических включений. В свою очередь, глинистая часть, представляющая собой кристаллические гидросиликаты алюминия, подразделяется по преимущественному содержанию соответствующих минералов на следующие разновидности: каолинитовые, галлуазитовые, монтмориллонитовые и гидрослюдистые.
К каолинитовым глинам относятся глины, содержащие в основном каолинит Al2O3 · 2SiO2 · 2H2O, имеющий сложную структуру. Общая формула каолинитовой глины имеет вид Al4(OH4)8[Si2O5]. Каолинит мало набухает и плохо диспергируется в воде. Удаление кристаллизационной воды протекает в одну стадию при температуре около 500С. Удельная поверхность его находится в пределах 15 м2/г.
Галлуазитовые глины содержат в своем составе не только галлуазит Al2O3 · 2SiO2 · 4H2O, но и метагаллуазит и ферригаллуазит. В этих минералах каолинитовые слои расположены беспорядочно относительно друг друга. Кристаллизационная вода удаляется при термообработке в две стадии, о чем свидетельствуют два эндотермических эффекта на кривой ДТА. Первый эндоэффект с минимумом при 125С, а второй, связанный с удалением остатков более прочно связанной воды, при 580С. Удельная поверхность такой глины более развитая, чем у предыдущей, и составляет порядка 40 м2/г.
К монтмориллонитовой группе относятся монтмориллонит Al2O3 · 4SiO2 · пH2O, бейделит, нонтронит. Кристаллизуется монтмориллонит в виде очень мелких частичек, образующих скопления с размытыми очертаниями. Такая дисперсность глинистых частичек обусловила и гораздо большую удельную поверхность природных алюмосиликатов, достигающую 800 м2/г. Данная удельная поверхность положительно скажется на скорости твердофазового взаимодействия в сырьевой смеси, но в то же время при мокром способе производства цемента это повлечет за собой повышенную влажность сырьевого шлама. Кроме того, высокая дисперсность глинистых частиц обуславливает наличие тонких пор и нахождение в них цеолитной воды, имеющей большую энергию связи с кристаллической решеткой алюмосиликата. В результате относительно слабосвязанная вода из монтмориллонита удаляется в две стадии при сравнительно низкой температуре 160 и 210С, а цеолитная только при 750 и 780С.
Гидрослюды представлены следующими глинистыми минералами: монотермитом, иллитом, глауконитом. Все они являются промежуточными соединениями между минералами каолинитовой группы и слюдами, т. е. они представляют собой продукты неполной каолинитизации слюд. Эти глинистые минералы не набухают, удельная поверхность их лежит в пределах 100 м2/г. Гидрослюды являются одними из самых подходящих для цементной промышленности по сравнению с другими мономинеральными природными алюмосиликатами.
Однако чаще всего глинистое сырье представляет собой смесь различных глинистых минералов. Нежелательны в глинах крупные зерна кварца, полевого шпата и слюд.
Кроме карбонатного и глинистого компонентов, на которые припадает свыше 90% сырьевой смеси, практически всегда используют и железосодержащие корректирующие добавки. Традиционными видами корректирующей добавки являются пиритные (колчеданные) огарки, колошниковая пыль, пыль газоочистки, характеризующиеся довольно высоким (не менее 75%) содержанием оксидов железа.
Для производства цемента используют в качестве сырья побочные продукты и отходы других отраслей промышленности. Причем их применяют как в виде основных компонентов, так и модифицирующих добавок. Наиболее широко используют доменные гранулированные, электротермофосфорные шлаки, топливные шлаки и золы, нефелиновый шлам, глиносодержащие отходы. На цементных заводах Беларуси из перечисленных отходов используют преимущественно доменные шлаки.
Доменные шлаки образуются при выплавке чугуна вследствие полного расплавления железной руды и флюса в восстановительной среде. Белорусские цементные заводы используют преимущественно доменный граншлак завода «Азовсталь» (Украина) следующего химического состава (мас. %): SiO2 36,9; Al2O3 10,5; CaO 45,9; MgO 2,9; MnO 2,07; S 1,59. Температура плавления его лежит в пределах 12001400С.
Доменные шлаки чаще всего используют в качестве активной минеральной добавки, при помоле цементного клинкера, а в ряде случаев и в виде сырьевого компонента вместо глины и части карбонатного компонента. В зависимости от режима охлаждения различают доменный гранулированный шлак, в котором преобладает стекловидная фаза, образующаяся вследствие резкого охлаждения расплава. При медленном охлаждении расплав застывает, образуя стеклокристаллический продукт, обладающий низкой гидравлической активностью.
Минералогический состав шлаков представлен в основном силикатами и алюмосиликатами кальция.
Гидравлическая активность доменного гранулированного шлака при содержании в нем MgO до 10% оценивается при помощи коэффициента качества (K), определяемого по формуле
;
при содержании MgO более 10%
.
В зависимости от величины коэффициента доменные гранулированные шлаки подразделяются на 3 сорта со значением K соответственно 1,65; 1,45 и 1,20.
Высокоосновные доменные гранулированные шлаки, содержащие преимущественно стеклофазу, гидратируются быстрее закристаллизованных медленноохлажденных. Высокая внутренняя химическая энергия стеклофазы обеспечивает такому шлаку повышенную растворимость и последующее образование кристаллогидратов.
Гранулированный шлак близок по составу портландцементной сырьевой смеси и в связи с тем, что он не содержит СаСО3, требующий затраты большого количества тепловой энергии на разложение, его выгодно использовать в качестве сырьевого компонента. Это обусловлено и тем, что в качестве кристаллических фаз в шлаке присутствуют минералы, близкие по составу минералам цементного клинкера. К сожалению, доменный молотый шлак при мокром способе производства цемента вызывает загустевание сырьевого шлама.
Наряду с вышеуказанными побочными продуктами в ряде случаев эффективно применение специально вводимых добавок, которые либо обеспечивают интенсификацию процесса обжига сырьевой смеси, либо могут придавать определенные свойства цементам. В первом случае такие добавки называют минерализаторами, в качестве которых могут использоваться фторид кальция, гексафторсиликат натрия. Перспективным минерализатором может быть шлам станции нейтрализации ОАО «Гомельский химический завод», состоящий в основном из солей плавиковой, гексафторкремниевой и ортофосфорной кислот. Минерализаторы могут снизить температуру обжига клинкера на 100150С, что позволит увеличить компанию вращающейся печи.
