
- •М. И. Кузьменков, о. Е. Хотянович химическая технология вяжущих веществ
- •Оглавление
- •Введение
- •Глава 1 гипсовые вяжущие
- •1.1. Классификация гипсовых вяжущих веществ
- •Классификация гипсовых вяжущих и области их применения
- •1.2. Свойства гипсовых вяжущих веществ
- •Виды гипсовых вяжущих в зависимости от сроков схватывания
- •Виды химических добавок для гипсовых вяжущих
- •1 Пористость; 2 водопоглощение; 3 средняя плотность;
- •4 Прочность на сжатие
- •Минимальный предел прочности каждой марки гипсового вяжущего
- •Виды гипсовых вяжущих в зависимости от тонкости помола
- •Основные свойства супергипса
- •Технические требования к гипсовым вяжущим, используемым для технических целей
- •Свойства высокообжиговых гипсовых вяжущих
- •1.3. Сырье для производства гипсовых вяжущих
- •Физико-механические свойства гипса и ангидрита
- •Сорта гипсового и гипсоангидритового камня
- •Химический состав фосфогипса из апатитового концентрата
- •1.4. Физико-химические основы процесса дегидратации CaSo4 · 2h2o
- •1.4.1. Равновесие реакции дегидратации CaSo4 · 2h2o.
- •Значения коэффициентов в уравнениях
- •Значения и для сульфатов кальция, кДж/моль
- •Значения энергии Гиббса реакций дегидратации CaSo4 · 2h2o
- •Зависимость энергии Гиббса (Дж/моль) от температуры реакций дегидратации гипса CaSo4 · 2h2o
- •1.4.2. Кинетика реакции дегидратации CaSo4 · 2h2o
- •1.4.3. Механизм процесса дегидратации CaSo4 · 2h2o.
- •Характеристика модификаций гипсовых вяжущих
- •1.5. Технология производства неводостойких (воздушных) гипсовых вяжущих веществ
- •Классификация технологических схем производства гипсовых вяжущих веществ по условиям тепловой обработки
- •1.5.1. Технология производства строительного гипса
- •1.5.2. Технология производства строительного гипса с использованием котлов непрерывного действия
- •1.5.3. Технология производства строительного гипса с использованием барабанных дегидраторов
- •1.5.4. Технология производства строительного гипса в аппаратах совмещенного помола и термообработки
- •1.5.5. Технология производства строительного гипса в котлах-дегидраторах кипящего слоя
- •1 Ленточный конвейер; 2 бункер гипсового щебня; 3 тарельчатый питатель;
- •4 Шахтная мельница; 5 теплогенератор; 6 батарея из 4 циклонов; 7 батарея
- •15 Дроссельная заслонка; 17 электрофильтр; 18 вентилятор; 20 элеватор;
- •1.5.6. Технология производства строительного гипса из фосфогипса
- •1.5.7. Технология производства строительного гипса из синтетического дигидрата сульфата кальция
- •1.6. Производство высокопрочного гипса
- •1.6.1. Технология производства высокопрочного гипса с дегидратацией и сушкой материала в раздельных аппаратах
- •1.6.2. Технология производства высокопрочного гипса с применением горизонтального автоклава
- •1.6.3. Технология производства высокопрочного гипса из фосфогипса
- •1.6.4. Технология производства высокопрочного гипса в жидких средах
- •1.7. Производство высокообжиговых гипсовых вяжущих
- •1.8. Получение гипсовых вяжущих веществ в лабораторных условиях
- •1.8.1. Исследование процесса получения строительного гипса
- •1 Нагревательный элемент; 2 емкость; 3 сосуд; 4 минеральное
- •1.8.2. Получение высокопрочного гипсового вяжущего
- •Растворы солей для получения высокопрочного гипса
- •1.8.3. Изучение условий получения высокообжиговых гипсовых вяжущих
- •1.8.4. Изучение свойств гипсовых вяжущих. Стандарты
- •1 Цилиндр; 2 стеклянная пластинка;
- •3 Концентрические окружности
- •1 Станина; 2 стержень; 3 шкала; 4 игла; 5 пестик;
- •6 Указатель; 7 винт; 8 кольцо; 9 стеклянная пластина
- •1 Нижняя плита пресса; 2 пластинки; 3 верхняя
- •Глава 2 Известковые вяжущие
- •2.1. Классификация известковых вяжущих
- •Виды строительной извести
- •Свойства воздушной извести
- •2.2. Сырье для производства воздушной извести
- •Доломит
- •Состав и некоторые свойства мелового сырья основных месторождений Республики Беларусь
- •2.3. Физико-химические основы термического разложения карбонатного сырья
- •2.3.1. Термодинамика диссоциации СаСо3.
- •4 Призма с основанием 25 мм, высотой 20 мм
- •2.3.2. Кинетика процесса диссоциации СаСо3
- •2.3.3. Механизм процесса диссоциации СаСо3
- •2.3.4. Влияние примесей на процесс декарбонизации карбонатного сырья
- •2.3.5. Технология производства строительной извести в шахтных печах
- •2.3.6. Пути совершенствования производства строительной извести из известняка
- •1 Холодильник; 2 шахта; 3, 7, 8 камеры;
- •5, 12, 17, 20 Переточные устройства; 6 люк;
- •9 Загрузочный патрубок; 10 – патрубок для отвода
- •Технико-экономическая характеристика известковых печей
- •2.3.7. Производство строительной извести по мокрому способу из влажного мела
- •2.3.8. Технология производства строительной извести по сухому способу из влажного мела
- •2.3.9. Технология производства извести из влажного мела в скоростном обжиговом агрегате
- •1 Элеватор; 2, 3 циклоны-подогреватели III ступени;
- •6, 7, 8 Циклонные холодильники
- •2.3.10. Технология производства гидратной и молотой извести
- •2.3.11. Магнезиальная известь и ее применение
- •2.4. Методология получения известковых вяжущих в лабораторных условиях
- •2.4.1. Анализ карбонатного сырья
- •2.4.2. Изучение условий получения строительной извести по мокрому способу
- •2.4.3. Исследование процесса получения строительной извести по сухому способу
- •2.4.4. Получение гидратной извести
- •2.4.5. Изучение условий получения гидравлической извести
- •2.4.6. Получение магнезиальной извести
- •2.4.7. Изучение свойств известковых вяжущих. Стандарты
- •Масса 1 мл со2 в зависимости от температуры и атмосферного давления
- •Давление водяных паров над насыщенным раствором NaCl в зависимости от температуры
- •1 Осевший конус раствора; 2 линейка с делениями;
- •3 Металлическая линейка; 4 форма-конус
- •Глава 3 портландцемент
- •3.1. Определения, классификация цементов. Стандарты
- •Механические и физические требования к портландцементу в зависимости от класса
- •3.2. Свойства портландцемента
- •Требования к маркам портландцемента и его разновидностям (гост 10178–85)
- •3.3. Состав портландцемента
- •Минералогический состав клинкеров
- •Двухкальциевого силиката
- •Относительная прочность клинкерных минералов
- •3.4. Структура цементного клинкера и методы идентификации фаз
- •3.5. Расчет минералогического состава клинкера и сырьевой смеси для его получения
- •3.6. Сырьевые материалы
- •3.7. Топливо в цементной промышленности
- •3.8. Общая характеристика технологических схем производства портландцемента
- •3.9. Физико-химические основы важнейших технологических стадий производства портландцемента
- •3.9.1. Общая характеристика твердофазовых реакций
- •3.9.2. Кинетика твердофазовых реакций
- •3.9.3. Минералообразование на стадии твердофазовых реакций
- •3.9.4. Минералообразование на стадии жидкофазового спекания
- •3.9.5. Процессы, происходящие в зоне охлаждения клинкера
- •3.9.6. Кольцеообразование во вращающейся печи и способы его предотвращения
- •3.10. Технология производства портландцементного клинкера по мокрому способу
- •3.10.1. Добыча и транспортировка сырья
- •3.10.2. Технология приготовления сырьевого шлама
- •3.10.3. Обжиг цементного клинкера по мокрому способу
- •3.11. Технолногия прозводства портландцементного клинкера по сухому способу
- •3.11.1. Технология приготовления сырьевой муки
- •3.11.2. Обжиг цементного клинкера по сухому способу
- •3.12. Технологический процесс обжига цементного клинкера из переувлажненного сырья
- •3.13. Помол цемента
- •3.13.1. Краткие теоретические основы измельчения
- •3.13.2. Технология помола цементного клинкера с добавками по замкнутому циклу
- •Физические свойства клинкерных минералов
- •3.14. Методология получения портландцемента в лабораторных условиях
- •3.14.1. Расчет, получение и изучение свойств сырьевой смеси для цементного клинкера
- •Химический состав исходных компонентов
- •Химический состав сырьевой смеси и клинкера
- •3.14.2. Получение цементного клинкера
- •3.14.3. Исследование прцесса помола цемента
- •3.14.4. Определение физико-механических свойств портландцемента
- •Плотности цемента
- •1 Кулачок; 2 столик; 3 шток;
- •4 Станина; 5 форма-конус с центрирующим
- •1 Стержень; 2 рукоятка
- •Глава 4 физико-химические Методы исследования минеральных вяжущих веществ
- •4.1. Дифференциальный термический анализ
- •1 − Гальванометр дифференциальной термопары;
- •2 − Гальванометр простой термопары (стрелками
- •3 − Исследуемое вещество; 4 − эталон
- •4.2. Рентгенографический анализ
- •1 − Анод; 2 − вольфрамовая нить; 3 − окно
- •1 − Рентгеновская трубка; 2 − диафрагма;
- •3 − Образец; 4 − гониометр; 5 − счетчик;
- •6 − Окружность движения счетчика
- •4.3. Оптическая и электронная микроскопия
- •4.4. Инфракрасная спектроскопия
- •Заключение
- •Литература
- •Химическая технология вяжущих веществ
- •220006. Минск, Свердлова, 13а.
- •220006. Минск, Свердлова, 13.
3.5. Расчет минералогического состава клинкера и сырьевой смеси для его получения
Рациональный состав клинкера зависит от условий работы конкретного завода, состава обжигаемой смеси, вида топлива и т. д. Для получения в зоне спекания необходимого количества жидкой фазы сумму С3А + С4AF следует выдерживать в пределах 1822% при содержании 58% С3А. В этом случае сумма С3S + С2S составит 7578%, в том числе содержание С3S будет находиться в пределах 5266%, а С2S 1424%.
Для удобства процентное содержание оксидов в сырьевой смеси или клинкере выражают в виде коэффициента насыщения (КН) и модулей (силикатного и глиноземного). Коэффициент насыщения представляет собой отношение количества СаО, остающегося после полного насыщения глинозема и оксида железа соответственно до 3СаО · Al2O3 и 4CaO · Al2O3 · Fe2O3, к тому количеству оксида кальция, которое необходимо для полного насыщения кремнезема до 3СаО · SiO2, и имеет следующее выражение
.
Обычно эта величина находится в пределах 0,880,92.
Чем больше значение КН, тем труднее обжигается сырьевая смесь, поскольку в этом случае проблематичным является полное усвоение СаО кислотными оксидами. Цементы из клинкеров с высоким КН быстрее твердеют и имеют более высокую прочность, но водостойкость их ниже.
Силикатный (кремнеземный) модуль отражает отношение содержания в клинкере SiO2 к сумме оксидов алюминия и железа:
.
Для портландцемента общестроительного назначения оптимальная величина п = 2,22,6. Чем выше значение п, тем хуже обжигается сырьевая смесь из-за низкого содержания жидкой фазы. Цементы, изготовленные из таких клинкеров, медленно схватываются и твердеют, но со временем прочность их неуклонно возрастает и через длительные сроки оказывается весьма высокой. Кроме того, такие цементы придают бетонам на их основе высокую стойкость в минерализованных водах. В свою очередь, низкое значение силикатного модуля обуславливает легкоплавкость сырьевой смеси, агломерирование ее в крупные куски и образование на футеровке печи колец (приваров).
Глиноземный (алюминатный) модуль показывает отношение количества оксида алюминия к оксиду железа:
.
Оптимальное значение величины р на цементных заводах находится в пределах 0,92,0. При нижнем значении р значительная часть Al2O3 будет связана в виде С4AF. Такая сырьевая смесь образует относительно большое количество клинкерного расплава, в результате чего на футеровке в зоне спекания вращающейся печи будет хорошая обмазка, которая предотвращает огнеупор от истирания. Клинкер в этом случае приобретает способность к образованию больших комьев. Цементы на основе такого клинкера хотя и медленно схватываются и твердеют, но зато в поздние сроки демонстрируют высокую прочность. В случае же верхнего значения р клинкер отличается повышенным содержанием С3А, но малым количеством C4AF, что существенно осложняет обжиг. Помимо этого, такие цементы быстро схватываются и твердеют, но достигнутая в ранние сроки прочность в дальнейшем увеличивается незначительно.
При расчете состава клинкера обычно задают модульные характеристики и начинают вычисления с двухкомпонентной шихты. При этом определяют соотношение основных компонентов (карбонатного и глинистого) для получения заданного значения КН. Однако величина КН характеризует лишь отношение С3S / С2S и определяет суммарное содержание СаО в клинкере. Поэтому для установления необходимости введения третьего и четвертого компонентов рассчитывают модули п и р для двухкомпонентной шихты. При этом может быть 5 случаев, когда фактические значения силикатного модуля (пф) и глиноземного (рф) будут отличаться от заданных значений (пз) и (рз):
1. пф = пз, рф = рз. Это редко встречается, в этом случае сырьевая смесь будет двухкомпонентной.
2. пф пз, рф рз. Это наиболее распространенный на практике случай. Для приведения фактических значений модулей в сырьевую смесь необходимо ввести третий (железистый) компонент.
3. пф пз, рф рз. В этом случае необходимо повысить содержание SiO2 за счет песка и Al2O3 путем ввода в сырьевую смесь глиноземистого компонента.
4. пф пз, рф рз. Необходимо повысить содержание Al2O3 в сырьевой смеси.
5. пф пз, рф рз. Для приведения в соответствие фактические и заданные значения модулей необходимо повысить содержание SiO2 и Fe2O3 в сырьевой смеси.
В случае использования твердого топлива необходимо учитывать, кроме того, присадку золы на клинкер. Во вращающейся печи при сжигании пылеугольного топлива 3080% золы садится на клинкер, снижая тем самым КН и п, поскольку она имеет следующий состав (мас. %): Al2O3 2530; Fe2O3 1520; СаО 36, SiO2 – остальное.
Таким образом, зная КН и модули, можно не только рассчитать состав сырьевой смеси и клинкера, но и прогнозировать особенности технологического процесса и свойства цемента.