
- •М. И. Кузьменков, о. Е. Хотянович химическая технология вяжущих веществ
- •Оглавление
- •Введение
- •Глава 1 гипсовые вяжущие
- •1.1. Классификация гипсовых вяжущих веществ
- •Классификация гипсовых вяжущих и области их применения
- •1.2. Свойства гипсовых вяжущих веществ
- •Виды гипсовых вяжущих в зависимости от сроков схватывания
- •Виды химических добавок для гипсовых вяжущих
- •1 Пористость; 2 водопоглощение; 3 средняя плотность;
- •4 Прочность на сжатие
- •Минимальный предел прочности каждой марки гипсового вяжущего
- •Виды гипсовых вяжущих в зависимости от тонкости помола
- •Основные свойства супергипса
- •Технические требования к гипсовым вяжущим, используемым для технических целей
- •Свойства высокообжиговых гипсовых вяжущих
- •1.3. Сырье для производства гипсовых вяжущих
- •Физико-механические свойства гипса и ангидрита
- •Сорта гипсового и гипсоангидритового камня
- •Химический состав фосфогипса из апатитового концентрата
- •1.4. Физико-химические основы процесса дегидратации CaSo4 · 2h2o
- •1.4.1. Равновесие реакции дегидратации CaSo4 · 2h2o.
- •Значения коэффициентов в уравнениях
- •Значения и для сульфатов кальция, кДж/моль
- •Значения энергии Гиббса реакций дегидратации CaSo4 · 2h2o
- •Зависимость энергии Гиббса (Дж/моль) от температуры реакций дегидратации гипса CaSo4 · 2h2o
- •1.4.2. Кинетика реакции дегидратации CaSo4 · 2h2o
- •1.4.3. Механизм процесса дегидратации CaSo4 · 2h2o.
- •Характеристика модификаций гипсовых вяжущих
- •1.5. Технология производства неводостойких (воздушных) гипсовых вяжущих веществ
- •Классификация технологических схем производства гипсовых вяжущих веществ по условиям тепловой обработки
- •1.5.1. Технология производства строительного гипса
- •1.5.2. Технология производства строительного гипса с использованием котлов непрерывного действия
- •1.5.3. Технология производства строительного гипса с использованием барабанных дегидраторов
- •1.5.4. Технология производства строительного гипса в аппаратах совмещенного помола и термообработки
- •1.5.5. Технология производства строительного гипса в котлах-дегидраторах кипящего слоя
- •1 Ленточный конвейер; 2 бункер гипсового щебня; 3 тарельчатый питатель;
- •4 Шахтная мельница; 5 теплогенератор; 6 батарея из 4 циклонов; 7 батарея
- •15 Дроссельная заслонка; 17 электрофильтр; 18 вентилятор; 20 элеватор;
- •1.5.6. Технология производства строительного гипса из фосфогипса
- •1.5.7. Технология производства строительного гипса из синтетического дигидрата сульфата кальция
- •1.6. Производство высокопрочного гипса
- •1.6.1. Технология производства высокопрочного гипса с дегидратацией и сушкой материала в раздельных аппаратах
- •1.6.2. Технология производства высокопрочного гипса с применением горизонтального автоклава
- •1.6.3. Технология производства высокопрочного гипса из фосфогипса
- •1.6.4. Технология производства высокопрочного гипса в жидких средах
- •1.7. Производство высокообжиговых гипсовых вяжущих
- •1.8. Получение гипсовых вяжущих веществ в лабораторных условиях
- •1.8.1. Исследование процесса получения строительного гипса
- •1 Нагревательный элемент; 2 емкость; 3 сосуд; 4 минеральное
- •1.8.2. Получение высокопрочного гипсового вяжущего
- •Растворы солей для получения высокопрочного гипса
- •1.8.3. Изучение условий получения высокообжиговых гипсовых вяжущих
- •1.8.4. Изучение свойств гипсовых вяжущих. Стандарты
- •1 Цилиндр; 2 стеклянная пластинка;
- •3 Концентрические окружности
- •1 Станина; 2 стержень; 3 шкала; 4 игла; 5 пестик;
- •6 Указатель; 7 винт; 8 кольцо; 9 стеклянная пластина
- •1 Нижняя плита пресса; 2 пластинки; 3 верхняя
- •Глава 2 Известковые вяжущие
- •2.1. Классификация известковых вяжущих
- •Виды строительной извести
- •Свойства воздушной извести
- •2.2. Сырье для производства воздушной извести
- •Доломит
- •Состав и некоторые свойства мелового сырья основных месторождений Республики Беларусь
- •2.3. Физико-химические основы термического разложения карбонатного сырья
- •2.3.1. Термодинамика диссоциации СаСо3.
- •4 Призма с основанием 25 мм, высотой 20 мм
- •2.3.2. Кинетика процесса диссоциации СаСо3
- •2.3.3. Механизм процесса диссоциации СаСо3
- •2.3.4. Влияние примесей на процесс декарбонизации карбонатного сырья
- •2.3.5. Технология производства строительной извести в шахтных печах
- •2.3.6. Пути совершенствования производства строительной извести из известняка
- •1 Холодильник; 2 шахта; 3, 7, 8 камеры;
- •5, 12, 17, 20 Переточные устройства; 6 люк;
- •9 Загрузочный патрубок; 10 – патрубок для отвода
- •Технико-экономическая характеристика известковых печей
- •2.3.7. Производство строительной извести по мокрому способу из влажного мела
- •2.3.8. Технология производства строительной извести по сухому способу из влажного мела
- •2.3.9. Технология производства извести из влажного мела в скоростном обжиговом агрегате
- •1 Элеватор; 2, 3 циклоны-подогреватели III ступени;
- •6, 7, 8 Циклонные холодильники
- •2.3.10. Технология производства гидратной и молотой извести
- •2.3.11. Магнезиальная известь и ее применение
- •2.4. Методология получения известковых вяжущих в лабораторных условиях
- •2.4.1. Анализ карбонатного сырья
- •2.4.2. Изучение условий получения строительной извести по мокрому способу
- •2.4.3. Исследование процесса получения строительной извести по сухому способу
- •2.4.4. Получение гидратной извести
- •2.4.5. Изучение условий получения гидравлической извести
- •2.4.6. Получение магнезиальной извести
- •2.4.7. Изучение свойств известковых вяжущих. Стандарты
- •Масса 1 мл со2 в зависимости от температуры и атмосферного давления
- •Давление водяных паров над насыщенным раствором NaCl в зависимости от температуры
- •1 Осевший конус раствора; 2 линейка с делениями;
- •3 Металлическая линейка; 4 форма-конус
- •Глава 3 портландцемент
- •3.1. Определения, классификация цементов. Стандарты
- •Механические и физические требования к портландцементу в зависимости от класса
- •3.2. Свойства портландцемента
- •Требования к маркам портландцемента и его разновидностям (гост 10178–85)
- •3.3. Состав портландцемента
- •Минералогический состав клинкеров
- •Двухкальциевого силиката
- •Относительная прочность клинкерных минералов
- •3.4. Структура цементного клинкера и методы идентификации фаз
- •3.5. Расчет минералогического состава клинкера и сырьевой смеси для его получения
- •3.6. Сырьевые материалы
- •3.7. Топливо в цементной промышленности
- •3.8. Общая характеристика технологических схем производства портландцемента
- •3.9. Физико-химические основы важнейших технологических стадий производства портландцемента
- •3.9.1. Общая характеристика твердофазовых реакций
- •3.9.2. Кинетика твердофазовых реакций
- •3.9.3. Минералообразование на стадии твердофазовых реакций
- •3.9.4. Минералообразование на стадии жидкофазового спекания
- •3.9.5. Процессы, происходящие в зоне охлаждения клинкера
- •3.9.6. Кольцеообразование во вращающейся печи и способы его предотвращения
- •3.10. Технология производства портландцементного клинкера по мокрому способу
- •3.10.1. Добыча и транспортировка сырья
- •3.10.2. Технология приготовления сырьевого шлама
- •3.10.3. Обжиг цементного клинкера по мокрому способу
- •3.11. Технолногия прозводства портландцементного клинкера по сухому способу
- •3.11.1. Технология приготовления сырьевой муки
- •3.11.2. Обжиг цементного клинкера по сухому способу
- •3.12. Технологический процесс обжига цементного клинкера из переувлажненного сырья
- •3.13. Помол цемента
- •3.13.1. Краткие теоретические основы измельчения
- •3.13.2. Технология помола цементного клинкера с добавками по замкнутому циклу
- •Физические свойства клинкерных минералов
- •3.14. Методология получения портландцемента в лабораторных условиях
- •3.14.1. Расчет, получение и изучение свойств сырьевой смеси для цементного клинкера
- •Химический состав исходных компонентов
- •Химический состав сырьевой смеси и клинкера
- •3.14.2. Получение цементного клинкера
- •3.14.3. Исследование прцесса помола цемента
- •3.14.4. Определение физико-механических свойств портландцемента
- •Плотности цемента
- •1 Кулачок; 2 столик; 3 шток;
- •4 Станина; 5 форма-конус с центрирующим
- •1 Стержень; 2 рукоятка
- •Глава 4 физико-химические Методы исследования минеральных вяжущих веществ
- •4.1. Дифференциальный термический анализ
- •1 − Гальванометр дифференциальной термопары;
- •2 − Гальванометр простой термопары (стрелками
- •3 − Исследуемое вещество; 4 − эталон
- •4.2. Рентгенографический анализ
- •1 − Анод; 2 − вольфрамовая нить; 3 − окно
- •1 − Рентгеновская трубка; 2 − диафрагма;
- •3 − Образец; 4 − гониометр; 5 − счетчик;
- •6 − Окружность движения счетчика
- •4.3. Оптическая и электронная микроскопия
- •4.4. Инфракрасная спектроскопия
- •Заключение
- •Литература
- •Химическая технология вяжущих веществ
- •220006. Минск, Свердлова, 13а.
- •220006. Минск, Свердлова, 13.
2.3.11. Магнезиальная известь и ее применение
Среди известковых вяжущих магнезиальная известь занимает особое место вследствие существенно иного способа своего затворения и нетрадиционных областей применения.
Магнезиальная известь это продукт, получаемый путем декарбонизации природного магнезита или неполного разложения доломита. В первом случае целевой продукт называют каустическим магнезитом, а во втором – каустическим доломитом.
В природе доломит в отличие от магнезита встречается гораздо чаще, поэтому его следует рассматривать как более перспективное сырье.
Каустический магнезит, используемый в качестве магнезиальной извести, в ряде случаев является побочным продуктом, получаемым при обжиге природного магнезита на металлургический магнезит (периклаз) при температуре выше 1400С во вращающихся печах. Пыль из печей улавливается в электрофильтрах и реализуется как «порошок магнезита каустический» ПМК-75, т. е. содержащий не менее 75% MgO.
Обжиг доломита может осуществляется в различных печных агрегатах шахтных, вращающихся печах, а также в агрегатах скоростного обжига в токе теплоносителя. Обжиг доломита в шахтных печах не в состоянии обеспечить однородный вещественный состав в кусках обожженного материала из-за близости температур разложения MgCO3 (800825С) и СаСО3 (905910С). Стремление добиться полного разложения MgCO3 до MgO практически всегда приводит к разложению и некоторого количества СаСО3 с образованием СаО. В результате присутствия последнего в количестве свыше 2% в каустическом доломите при затворении солевым раствором вследствие протекания реакции
С аО + Н2О Са(ОН)2 + q,
приводящей к увеличению объема, возникают напряжения и в конечном итоге – разупрочнение изделия.
В значительно меньшем масштабе эти негативные явления будут иметь место при обжиге доломитового щебня во вращающихся печах, поскольку при меньших размерах кусков обжигаемого материала легче предотвратить образование СаО, добиваясь одновременно высокой степени декарбонизации MgCO3.
Еще более однородный вещественный состав каустического доломита может быть достигнут при обжиге доломитовой муки в токе теплоносителя в агрегате скоростного обжига, состоящего из циклонных теплообменников, реактора – декарбонизатора и бункера томления (см. 2.3.9).
Как уже отмечалось выше, затворение каустического доломита и магнезита производится водным раствором хлорида магния или сульфата магния. Следует отметить, что механизм твердения является довольно сложным и до конца не изученным.
При затворении каустического магнезита раствором бишофита плотностью 1160 кг/м3 протекают следующие последовательные реакции.
5MgO + MgCl2 + 18H2O = 5Mg(OH)2MgCl2 · 13H2O.
5Mg(OH)2MgCl2 · 13H2O
3Mg(OH)2 · MgCl2 · 11H2O + 2Mg(OH)2.
Твердение начинается с образования кристаллов игольчатой формы Mg(OH)2, которые армируют тесто, придавая ему начальную прочность. В дальнейшем происходит образование кристаллогидратов гидрооксихлорида магния, что и обеспечивает уже в семисуточном возрасте почти марочную прочность, которая может достигать значений 500800 кгс/см2.
После затворения бишофитом каустического доломита набор прочности обуславливается протеканием нижеследующих реакций.
3MgO + MgCl2 + 7H2O 3Mg(OH)2 · MgCl2 · 4H2O +
+ Mg(OH)2 5Mg(OH)2 · MgCl2 · 4H2O.
При использовании в качестве затворителя MgSO4 в составе каустического доломита СаСО3 взаимодействует с ним по реакции
2СаСО3 + MgSO4 + 2H2O СаSO4 · 2H2O + СаMg(СО3)2.
Образующийся гипс обеспечивает в начальный период твердения набор прочности.
В дальнейшем происходит взаимодействие MgO с затворителем с образованием кристаллогидратов гидрооксисульфатов магния следующим образом:
5MgO + MgSO4 + 8H2O 5 Mg(OН)2 · MgSO4 3H2O.
За счет образования кристаллов гидрооксисульфата магния в более поздние сроки твердения достигается высокая прочность.
Следует отметить, что долгое время ошибочно считалось, что нельзя достичь высокой прочности каустического доломита из-за более низкого содержания в нем MgO ( 1819%) по сравнению с каустическим магнезитом, содержащим не менее 75% MgO.
Однако исследования, выполненные на кафедре ХТВМ БГТУ, а также в зарубежных научных организациях, свидетельствуют о том, что на основе каустического доломита может быть достигнута прочность на сжатие до 1000 кгс/см2, т. е. даже выше, чем на основе портландцемента.
Следует однако отметить, что коэффициент водостойкости цементного камня, полученного на основе магнезиальных вяжущих, находится в пределах 0,450,60. Поэтому для его повышения до 0,851,00 вводят специальные добавки – фосфаты различных металлов, сульфоалюминаты и др.
Благодаря целому ряду достоинств магнезиальная известь в последние годы приобретает все большую популярность в промышленности строительных материалов. Более низкие энергетические затраты на ее производство (на примере каустического доломита они примерно в два раза ниже, чем производство строительной извести из переувлажненного мела) позволяют такое вяжущее применять для изготовления практически всех видов строительных материалов, начиная от фундаментных блоков и заканчивая кровлей.