- •М. И. Кузьменков, о. Е. Хотянович химическая технология вяжущих веществ
- •Оглавление
- •Введение
- •Глава 1 гипсовые вяжущие
- •1.1. Классификация гипсовых вяжущих веществ
- •Классификация гипсовых вяжущих и области их применения
- •1.2. Свойства гипсовых вяжущих веществ
- •Виды гипсовых вяжущих в зависимости от сроков схватывания
- •Виды химических добавок для гипсовых вяжущих
- •1 Пористость; 2 водопоглощение; 3 средняя плотность;
- •4 Прочность на сжатие
- •Минимальный предел прочности каждой марки гипсового вяжущего
- •Виды гипсовых вяжущих в зависимости от тонкости помола
- •Основные свойства супергипса
- •Технические требования к гипсовым вяжущим, используемым для технических целей
- •Свойства высокообжиговых гипсовых вяжущих
- •1.3. Сырье для производства гипсовых вяжущих
- •Физико-механические свойства гипса и ангидрита
- •Сорта гипсового и гипсоангидритового камня
- •Химический состав фосфогипса из апатитового концентрата
- •1.4. Физико-химические основы процесса дегидратации CaSo4 · 2h2o
- •1.4.1. Равновесие реакции дегидратации CaSo4 · 2h2o.
- •Значения коэффициентов в уравнениях
- •Значения и для сульфатов кальция, кДж/моль
- •Значения энергии Гиббса реакций дегидратации CaSo4 · 2h2o
- •Зависимость энергии Гиббса (Дж/моль) от температуры реакций дегидратации гипса CaSo4 · 2h2o
- •1.4.2. Кинетика реакции дегидратации CaSo4 · 2h2o
- •1.4.3. Механизм процесса дегидратации CaSo4 · 2h2o.
- •Характеристика модификаций гипсовых вяжущих
- •1.5. Технология производства неводостойких (воздушных) гипсовых вяжущих веществ
- •Классификация технологических схем производства гипсовых вяжущих веществ по условиям тепловой обработки
- •1.5.1. Технология производства строительного гипса
- •1.5.2. Технология производства строительного гипса с использованием котлов непрерывного действия
- •1.5.3. Технология производства строительного гипса с использованием барабанных дегидраторов
- •1.5.4. Технология производства строительного гипса в аппаратах совмещенного помола и термообработки
- •1.5.5. Технология производства строительного гипса в котлах-дегидраторах кипящего слоя
- •1 Ленточный конвейер; 2 бункер гипсового щебня; 3 тарельчатый питатель;
- •4 Шахтная мельница; 5 теплогенератор; 6 батарея из 4 циклонов; 7 батарея
- •15 Дроссельная заслонка; 17 электрофильтр; 18 вентилятор; 20 элеватор;
- •1.5.6. Технология производства строительного гипса из фосфогипса
- •1.5.7. Технология производства строительного гипса из синтетического дигидрата сульфата кальция
- •1.6. Производство высокопрочного гипса
- •1.6.1. Технология производства высокопрочного гипса с дегидратацией и сушкой материала в раздельных аппаратах
- •1.6.2. Технология производства высокопрочного гипса с применением горизонтального автоклава
- •1.6.3. Технология производства высокопрочного гипса из фосфогипса
- •1.6.4. Технология производства высокопрочного гипса в жидких средах
- •1.7. Производство высокообжиговых гипсовых вяжущих
- •1.8. Получение гипсовых вяжущих веществ в лабораторных условиях
- •1.8.1. Исследование процесса получения строительного гипса
- •1 Нагревательный элемент; 2 емкость; 3 сосуд; 4 минеральное
- •1.8.2. Получение высокопрочного гипсового вяжущего
- •Растворы солей для получения высокопрочного гипса
- •1.8.3. Изучение условий получения высокообжиговых гипсовых вяжущих
- •1.8.4. Изучение свойств гипсовых вяжущих. Стандарты
- •1 Цилиндр; 2 стеклянная пластинка;
- •3 Концентрические окружности
- •1 Станина; 2 стержень; 3 шкала; 4 игла; 5 пестик;
- •6 Указатель; 7 винт; 8 кольцо; 9 стеклянная пластина
- •1 Нижняя плита пресса; 2 пластинки; 3 верхняя
- •Глава 2 Известковые вяжущие
- •2.1. Классификация известковых вяжущих
- •Виды строительной извести
- •Свойства воздушной извести
- •2.2. Сырье для производства воздушной извести
- •Доломит
- •Состав и некоторые свойства мелового сырья основных месторождений Республики Беларусь
- •2.3. Физико-химические основы термического разложения карбонатного сырья
- •2.3.1. Термодинамика диссоциации СаСо3.
- •4 Призма с основанием 25 мм, высотой 20 мм
- •2.3.2. Кинетика процесса диссоциации СаСо3
- •2.3.3. Механизм процесса диссоциации СаСо3
- •2.3.4. Влияние примесей на процесс декарбонизации карбонатного сырья
- •2.3.5. Технология производства строительной извести в шахтных печах
- •2.3.6. Пути совершенствования производства строительной извести из известняка
- •1 Холодильник; 2 шахта; 3, 7, 8 камеры;
- •5, 12, 17, 20 Переточные устройства; 6 люк;
- •9 Загрузочный патрубок; 10 – патрубок для отвода
- •Технико-экономическая характеристика известковых печей
- •2.3.7. Производство строительной извести по мокрому способу из влажного мела
- •2.3.8. Технология производства строительной извести по сухому способу из влажного мела
- •2.3.9. Технология производства извести из влажного мела в скоростном обжиговом агрегате
- •1 Элеватор; 2, 3 циклоны-подогреватели III ступени;
- •6, 7, 8 Циклонные холодильники
- •2.3.10. Технология производства гидратной и молотой извести
- •2.3.11. Магнезиальная известь и ее применение
- •2.4. Методология получения известковых вяжущих в лабораторных условиях
- •2.4.1. Анализ карбонатного сырья
- •2.4.2. Изучение условий получения строительной извести по мокрому способу
- •2.4.3. Исследование процесса получения строительной извести по сухому способу
- •2.4.4. Получение гидратной извести
- •2.4.5. Изучение условий получения гидравлической извести
- •2.4.6. Получение магнезиальной извести
- •2.4.7. Изучение свойств известковых вяжущих. Стандарты
- •Масса 1 мл со2 в зависимости от температуры и атмосферного давления
- •Давление водяных паров над насыщенным раствором NaCl в зависимости от температуры
- •1 Осевший конус раствора; 2 линейка с делениями;
- •3 Металлическая линейка; 4 форма-конус
- •Глава 3 портландцемент
- •3.1. Определения, классификация цементов. Стандарты
- •Механические и физические требования к портландцементу в зависимости от класса
- •3.2. Свойства портландцемента
- •Требования к маркам портландцемента и его разновидностям (гост 10178–85)
- •3.3. Состав портландцемента
- •Минералогический состав клинкеров
- •Двухкальциевого силиката
- •Относительная прочность клинкерных минералов
- •3.4. Структура цементного клинкера и методы идентификации фаз
- •3.5. Расчет минералогического состава клинкера и сырьевой смеси для его получения
- •3.6. Сырьевые материалы
- •3.7. Топливо в цементной промышленности
- •3.8. Общая характеристика технологических схем производства портландцемента
- •3.9. Физико-химические основы важнейших технологических стадий производства портландцемента
- •3.9.1. Общая характеристика твердофазовых реакций
- •3.9.2. Кинетика твердофазовых реакций
- •3.9.3. Минералообразование на стадии твердофазовых реакций
- •3.9.4. Минералообразование на стадии жидкофазового спекания
- •3.9.5. Процессы, происходящие в зоне охлаждения клинкера
- •3.9.6. Кольцеообразование во вращающейся печи и способы его предотвращения
- •3.10. Технология производства портландцементного клинкера по мокрому способу
- •3.10.1. Добыча и транспортировка сырья
- •3.10.2. Технология приготовления сырьевого шлама
- •3.10.3. Обжиг цементного клинкера по мокрому способу
- •3.11. Технолногия прозводства портландцементного клинкера по сухому способу
- •3.11.1. Технология приготовления сырьевой муки
- •3.11.2. Обжиг цементного клинкера по сухому способу
- •3.12. Технологический процесс обжига цементного клинкера из переувлажненного сырья
- •3.13. Помол цемента
- •3.13.1. Краткие теоретические основы измельчения
- •3.13.2. Технология помола цементного клинкера с добавками по замкнутому циклу
- •Физические свойства клинкерных минералов
- •3.14. Методология получения портландцемента в лабораторных условиях
- •3.14.1. Расчет, получение и изучение свойств сырьевой смеси для цементного клинкера
- •Химический состав исходных компонентов
- •Химический состав сырьевой смеси и клинкера
- •3.14.2. Получение цементного клинкера
- •3.14.3. Исследование прцесса помола цемента
- •3.14.4. Определение физико-механических свойств портландцемента
- •Плотности цемента
- •1 Кулачок; 2 столик; 3 шток;
- •4 Станина; 5 форма-конус с центрирующим
- •1 Стержень; 2 рукоятка
- •Глава 4 физико-химические Методы исследования минеральных вяжущих веществ
- •4.1. Дифференциальный термический анализ
- •1 − Гальванометр дифференциальной термопары;
- •2 − Гальванометр простой термопары (стрелками
- •3 − Исследуемое вещество; 4 − эталон
- •4.2. Рентгенографический анализ
- •1 − Анод; 2 − вольфрамовая нить; 3 − окно
- •1 − Рентгеновская трубка; 2 − диафрагма;
- •3 − Образец; 4 − гониометр; 5 − счетчик;
- •6 − Окружность движения счетчика
- •4.3. Оптическая и электронная микроскопия
- •4.4. Инфракрасная спектроскопия
- •Заключение
- •Литература
- •Химическая технология вяжущих веществ
- •220006. Минск, Свердлова, 13а.
- •220006. Минск, Свердлова, 13.
2.3.4. Влияние примесей на процесс декарбонизации карбонатного сырья
Примеси, содержащиеся в известняках, мелах и доломитах, можно классифицировать на гомогенные, когда глина, ил и песок (кварц или другие разновидности кремнезема), загрязняющие породу, отлагались одновременно с карбонатами и поэтому равномерно распределены по всей толще сырья, или как гетерогенные в случае их нахождения в трещинах и промежутках между пластами. Последние могут включать кремневые плиты и конкреции, прослойки песка, сланца или мелкозернистого песчаника, заключенные в известняках. Они являются источником SiO2 и Al2O3 главных примесей в известняке. Другими источниками кремнезема служат полевые шпаты, слюда, тальк и серпентин. Доля этих примесей составляет от их общего количества 8595%.
Влияние примесей на процесс спекания сводится к тому, что образующиеся с их участием легкоплавкие соединения заполняют межкристальные поры, способствуя или в некоторых случаях препятствуя спеканию и рекристаллизации.
Щелочи встречаются в карбонатном сырье в неглинистых известняках в виде карбонатов и хлоридов натрия, калия и магния. Причем NaCl обычно встречается в высококальциевом известняке, а MgCl2 в доломитах. Оксиды натрия и калия значительно ухудшают спекание несмотря на то, что содержание расплава в обжигаемом материале увеличивается. В то же время в присутствии NaCl кристаллы СаО растут значительно быстрее, достигая при 1200С размера 8 мкм, т. е. примерно в 4 раза большего, чем при отсутствии хлорида.
Железосодержащие примеси также практически всегда присутствуют в карбонатном сырье. Ионы Fe2+ равномерно распределены в известняках и, замещая Са2+ и Mg2+, образуют карбонат железа. Другим источником железа, кроме доломитовых известняков, могут быть неравномерно рассеянные в породе зерна минералов, чаще пирита и лимонита, реже магнетита и гематита.
Оксиды железа и алюминия, в отличие от щелочных оксидов, наоборот, способствуют спеканию в результате понижения температуры образования жидкой фазы. В системе CaO Fe2О3 образуются СаО · Fe2О3 (tпл = 12251250С) и 2СаО · Fe2О3 (tпл = 13001325С). В этой системе взаимодействие начинается при сравнительно низких температурах с образованием маловязкой жидкой фазы, которая способна «обволакивать» зерна извести.
Огромное влияние оксид железа оказывает на стойкость футеровки печи, особенно шамотной.
Еще более негативное влияние оказывает FeO, который может образовываться в результате восстановления Fe2О3 оксидом углерода в печи. Оксид Fe2+ способен образовывать чрезвычайно легкоплавкие соединения, как, например, файялит 2FeО · SiО2 (tпл = 1065С).
Глинозем, по некоторым данным, вступает в реакцию с СаО в интервале температур 500900С. Начиная с 1000С реакция идет с большой скоростью с образованием сначала моноалюмината кальция СаО · Al2O3, а затем по мере дальнейшего повышения температуры соединение насыщается оксидом кальция и образуется 3СаО · Al2O3. Трехкальциевый алюминат обладает исключительной способностью переводить известь в малоактивную форму.
Таким образом, соединения СаО с оксидами железа и алюминия наиболее легкоплавкие и образуют первые порции жидкой фазы.
Кремнезем постоянный спутник карбонатных пород, содержание его обычно находится в пределах 33,5%. Чем равномернее распределен SiO2 в известняке или меле, тем быстрее и полнее идет реакция с образованием СаО · SiO2 (tпл = 1540С), 3СаО · 2SiO2 (tпл = 1475С), 2СаО · SiO2 (tпл = 2130С), 3СаО · SiO2 (tразл = 1900С). Силикаты кальция, как видно, являясь достаточно тугоплавкими соединениями, при температуре обжига извести расплавов не образуют. Негативное проявление кремнезема состоит в том, что образующиеся с его участием силикаты кальция представляют собой безвозвратные потери обожженной извести.
Кроме того, вышеуказанные силикаты, алюминаты и ферриты кальция в определенной мере влияют на свойства извести, т. к. они очень медленно реагируют с водой, что отражается на процессе гашения извести. Чем больше в извести этих соединений, тем медленнее и менее полно она гасится и тем менее пластичным получается из нее тесто. В отдельных случаях эти соединения способствуют образованию так называемой намертвообожженной извести. Кроме того, эти примеси способствуют уплотнению кусков обжигаемого материала, что приводит к уменьшению удельной поверхности, а это, в свою очередь, негативно сказывается на процессе гашения извести.
Фосфор- и серосодержащие примеси встречаются в карбонатном сырье, как правило, в малых количествах, первая – в виде гидроксилапатита Са5ОН(РО4)3, вторая представлена гипсом, а также продуктами сульфатизации извести сернистым ангидритом, который образуется при сжигании твердого и жидкого топлива. Сернистый ангидрид поглощается известью значительно быстрее, чем СО2, и при более низких температурах ( 400С). До 550С реакция протекает с образованием СаSO3, а при более высокой температуре образуются сульфид и сульфат:
4СаSO3 = 3CaSO4 + CaS.
Гипс начинает разлагаться при 1100С с небольшой скоростью.
Основное влияние СаSO4 на обжиг заключается в понижении температуры образования жидкой фазы. Отрицательное влияние гипса состоит также и в том, что он сильно замедляет гидратацию извести.
Фосфор- и серосодержащие примеси довольно равномерно распределены в породе, и, следовательно, их можно отнести к гомогенным.
Частичная доломитизация известняков и мелов является причиной появления в их составе карбоната магния, количество которого может находиться в довольно широких пределах, доломитизированных (1221%), магнезиальных (выше 21%) MgCO3. Температура разложения MgCO3, по данным разных авторов, колеблется от 402С до 756С. Такой широкий диапазон температур разложения связывают с различной структурой MgCO3 в природных карбонатах. Поскольку обжиг СаСО3 идет при более высоких температурах, чем разложение MgCO3, то образующийся MgO, проходя температурную зону 11001200С, рекристаллизуется и поэтому пассивируется. В дальнейшем, при гашении такой извести, MgO не успевает гидратироваться и поэтому взаимодействие с водой может начаться уже в изделиях, например в силикатном кирпиче, при его запаривании в автоклаве (температура 170180С), а поскольку гашение сопровождается увеличением объема, то это, как правило, приводит к возникновению напряжений в изделиях и появлению трещин.
Помимо этого, MgO заметно понижает температуру появления жидкой фазы и при этом растворяется в расплаве в значительном количестве.
Следовательно, MgСO3 следует считать весьма нежелательной примесью в сырье.
Особую группу примесей представляют органические включения в количестве около 1%. Однако они в отличие от неорганических примесей практически не оказывают влияния ни на процесс обжига, ни на качество целевого продукта, поскольку в ходе декарбонизации полностью сгорают, а содержание остатков их пиролиза ничтожно. Это касается и примесей, образующихся от сгорания жидкого топлива.
И, наконец, роль водяных паров в печном пространстве на процесс декарбонизации. В целом действие водяных паров оказывает ускоряющее действие, т. к. своим присутствием в печи они снижают парциальное давление СО2, что способствует сдвигу равновесия реакции декарбонизации в сторону целевого продукта. Присутствие же больших количеств водяных паров, которые поступают в печное пространство не только из сырья, но и от сгорания природного газа при мокром способе производства извести, приводит к снижению концентрации СО2 в дымовых газах примерно до 25%, что существенно усложняет задачу по его использованию.
В процессе обжига карбонатного сырья начиная с 350С в печи протекает реакция карбонизации. Значительная скорость этой реакции достигается при 600С и выше. При этом куски извести покрываются плотной коркой СаСО3.
Наличие вышеуказанных примесей в карбонатном сырье, безусловно, сказывается как на процесс обжига, так и качественные показатели извести, но в неодинаковой мере. На стадии обжига природных карбонатов проявление примесей будет различным также и в зависимости от типа печного агрегата, в котором осуществляется декарбонизация.
