
- •М. И. Кузьменков, о. Е. Хотянович химическая технология вяжущих веществ
- •Оглавление
- •Введение
- •Глава 1 гипсовые вяжущие
- •1.1. Классификация гипсовых вяжущих веществ
- •Классификация гипсовых вяжущих и области их применения
- •1.2. Свойства гипсовых вяжущих веществ
- •Виды гипсовых вяжущих в зависимости от сроков схватывания
- •Виды химических добавок для гипсовых вяжущих
- •1 Пористость; 2 водопоглощение; 3 средняя плотность;
- •4 Прочность на сжатие
- •Минимальный предел прочности каждой марки гипсового вяжущего
- •Виды гипсовых вяжущих в зависимости от тонкости помола
- •Основные свойства супергипса
- •Технические требования к гипсовым вяжущим, используемым для технических целей
- •Свойства высокообжиговых гипсовых вяжущих
- •1.3. Сырье для производства гипсовых вяжущих
- •Физико-механические свойства гипса и ангидрита
- •Сорта гипсового и гипсоангидритового камня
- •Химический состав фосфогипса из апатитового концентрата
- •1.4. Физико-химические основы процесса дегидратации CaSo4 · 2h2o
- •1.4.1. Равновесие реакции дегидратации CaSo4 · 2h2o.
- •Значения коэффициентов в уравнениях
- •Значения и для сульфатов кальция, кДж/моль
- •Значения энергии Гиббса реакций дегидратации CaSo4 · 2h2o
- •Зависимость энергии Гиббса (Дж/моль) от температуры реакций дегидратации гипса CaSo4 · 2h2o
- •1.4.2. Кинетика реакции дегидратации CaSo4 · 2h2o
- •1.4.3. Механизм процесса дегидратации CaSo4 · 2h2o.
- •Характеристика модификаций гипсовых вяжущих
- •1.5. Технология производства неводостойких (воздушных) гипсовых вяжущих веществ
- •Классификация технологических схем производства гипсовых вяжущих веществ по условиям тепловой обработки
- •1.5.1. Технология производства строительного гипса
- •1.5.2. Технология производства строительного гипса с использованием котлов непрерывного действия
- •1.5.3. Технология производства строительного гипса с использованием барабанных дегидраторов
- •1.5.4. Технология производства строительного гипса в аппаратах совмещенного помола и термообработки
- •1.5.5. Технология производства строительного гипса в котлах-дегидраторах кипящего слоя
- •1 Ленточный конвейер; 2 бункер гипсового щебня; 3 тарельчатый питатель;
- •4 Шахтная мельница; 5 теплогенератор; 6 батарея из 4 циклонов; 7 батарея
- •15 Дроссельная заслонка; 17 электрофильтр; 18 вентилятор; 20 элеватор;
- •1.5.6. Технология производства строительного гипса из фосфогипса
- •1.5.7. Технология производства строительного гипса из синтетического дигидрата сульфата кальция
- •1.6. Производство высокопрочного гипса
- •1.6.1. Технология производства высокопрочного гипса с дегидратацией и сушкой материала в раздельных аппаратах
- •1.6.2. Технология производства высокопрочного гипса с применением горизонтального автоклава
- •1.6.3. Технология производства высокопрочного гипса из фосфогипса
- •1.6.4. Технология производства высокопрочного гипса в жидких средах
- •1.7. Производство высокообжиговых гипсовых вяжущих
- •1.8. Получение гипсовых вяжущих веществ в лабораторных условиях
- •1.8.1. Исследование процесса получения строительного гипса
- •1 Нагревательный элемент; 2 емкость; 3 сосуд; 4 минеральное
- •1.8.2. Получение высокопрочного гипсового вяжущего
- •Растворы солей для получения высокопрочного гипса
- •1.8.3. Изучение условий получения высокообжиговых гипсовых вяжущих
- •1.8.4. Изучение свойств гипсовых вяжущих. Стандарты
- •1 Цилиндр; 2 стеклянная пластинка;
- •3 Концентрические окружности
- •1 Станина; 2 стержень; 3 шкала; 4 игла; 5 пестик;
- •6 Указатель; 7 винт; 8 кольцо; 9 стеклянная пластина
- •1 Нижняя плита пресса; 2 пластинки; 3 верхняя
- •Глава 2 Известковые вяжущие
- •2.1. Классификация известковых вяжущих
- •Виды строительной извести
- •Свойства воздушной извести
- •2.2. Сырье для производства воздушной извести
- •Доломит
- •Состав и некоторые свойства мелового сырья основных месторождений Республики Беларусь
- •2.3. Физико-химические основы термического разложения карбонатного сырья
- •2.3.1. Термодинамика диссоциации СаСо3.
- •4 Призма с основанием 25 мм, высотой 20 мм
- •2.3.2. Кинетика процесса диссоциации СаСо3
- •2.3.3. Механизм процесса диссоциации СаСо3
- •2.3.4. Влияние примесей на процесс декарбонизации карбонатного сырья
- •2.3.5. Технология производства строительной извести в шахтных печах
- •2.3.6. Пути совершенствования производства строительной извести из известняка
- •1 Холодильник; 2 шахта; 3, 7, 8 камеры;
- •5, 12, 17, 20 Переточные устройства; 6 люк;
- •9 Загрузочный патрубок; 10 – патрубок для отвода
- •Технико-экономическая характеристика известковых печей
- •2.3.7. Производство строительной извести по мокрому способу из влажного мела
- •2.3.8. Технология производства строительной извести по сухому способу из влажного мела
- •2.3.9. Технология производства извести из влажного мела в скоростном обжиговом агрегате
- •1 Элеватор; 2, 3 циклоны-подогреватели III ступени;
- •6, 7, 8 Циклонные холодильники
- •2.3.10. Технология производства гидратной и молотой извести
- •2.3.11. Магнезиальная известь и ее применение
- •2.4. Методология получения известковых вяжущих в лабораторных условиях
- •2.4.1. Анализ карбонатного сырья
- •2.4.2. Изучение условий получения строительной извести по мокрому способу
- •2.4.3. Исследование процесса получения строительной извести по сухому способу
- •2.4.4. Получение гидратной извести
- •2.4.5. Изучение условий получения гидравлической извести
- •2.4.6. Получение магнезиальной извести
- •2.4.7. Изучение свойств известковых вяжущих. Стандарты
- •Масса 1 мл со2 в зависимости от температуры и атмосферного давления
- •Давление водяных паров над насыщенным раствором NaCl в зависимости от температуры
- •1 Осевший конус раствора; 2 линейка с делениями;
- •3 Металлическая линейка; 4 форма-конус
- •Глава 3 портландцемент
- •3.1. Определения, классификация цементов. Стандарты
- •Механические и физические требования к портландцементу в зависимости от класса
- •3.2. Свойства портландцемента
- •Требования к маркам портландцемента и его разновидностям (гост 10178–85)
- •3.3. Состав портландцемента
- •Минералогический состав клинкеров
- •Двухкальциевого силиката
- •Относительная прочность клинкерных минералов
- •3.4. Структура цементного клинкера и методы идентификации фаз
- •3.5. Расчет минералогического состава клинкера и сырьевой смеси для его получения
- •3.6. Сырьевые материалы
- •3.7. Топливо в цементной промышленности
- •3.8. Общая характеристика технологических схем производства портландцемента
- •3.9. Физико-химические основы важнейших технологических стадий производства портландцемента
- •3.9.1. Общая характеристика твердофазовых реакций
- •3.9.2. Кинетика твердофазовых реакций
- •3.9.3. Минералообразование на стадии твердофазовых реакций
- •3.9.4. Минералообразование на стадии жидкофазового спекания
- •3.9.5. Процессы, происходящие в зоне охлаждения клинкера
- •3.9.6. Кольцеообразование во вращающейся печи и способы его предотвращения
- •3.10. Технология производства портландцементного клинкера по мокрому способу
- •3.10.1. Добыча и транспортировка сырья
- •3.10.2. Технология приготовления сырьевого шлама
- •3.10.3. Обжиг цементного клинкера по мокрому способу
- •3.11. Технолногия прозводства портландцементного клинкера по сухому способу
- •3.11.1. Технология приготовления сырьевой муки
- •3.11.2. Обжиг цементного клинкера по сухому способу
- •3.12. Технологический процесс обжига цементного клинкера из переувлажненного сырья
- •3.13. Помол цемента
- •3.13.1. Краткие теоретические основы измельчения
- •3.13.2. Технология помола цементного клинкера с добавками по замкнутому циклу
- •Физические свойства клинкерных минералов
- •3.14. Методология получения портландцемента в лабораторных условиях
- •3.14.1. Расчет, получение и изучение свойств сырьевой смеси для цементного клинкера
- •Химический состав исходных компонентов
- •Химический состав сырьевой смеси и клинкера
- •3.14.2. Получение цементного клинкера
- •3.14.3. Исследование прцесса помола цемента
- •3.14.4. Определение физико-механических свойств портландцемента
- •Плотности цемента
- •1 Кулачок; 2 столик; 3 шток;
- •4 Станина; 5 форма-конус с центрирующим
- •1 Стержень; 2 рукоятка
- •Глава 4 физико-химические Методы исследования минеральных вяжущих веществ
- •4.1. Дифференциальный термический анализ
- •1 − Гальванометр дифференциальной термопары;
- •2 − Гальванометр простой термопары (стрелками
- •3 − Исследуемое вещество; 4 − эталон
- •4.2. Рентгенографический анализ
- •1 − Анод; 2 − вольфрамовая нить; 3 − окно
- •1 − Рентгеновская трубка; 2 − диафрагма;
- •3 − Образец; 4 − гониометр; 5 − счетчик;
- •6 − Окружность движения счетчика
- •4.3. Оптическая и электронная микроскопия
- •4.4. Инфракрасная спектроскопия
- •Заключение
- •Литература
- •Химическая технология вяжущих веществ
- •220006. Минск, Свердлова, 13а.
- •220006. Минск, Свердлова, 13.
1.6.2. Технология производства высокопрочного гипса с применением горизонтального автоклава
Гипс прочностью 1530 МПа получают путем термообработки кускового природного гипса в автоклаве и последующим модифицированием его в гипсоварочном котле (рис. 1.18).
Рис. 1.18. Технологическая схема производства
с применением горизонтального автоклава:
1, 7, 8, 13, 19 бункер; 2, 4 питатель; 3 щековая дробилка; 5 грохот;
6, 12 элеватор; 9 дозатор; 10 вагонетка с перфорированными кассетами;
11 автоклав; 14 шахтная мельница; 15 сдвоенный циклон; 16 вентилятор;
17 рукавный фильтр; 18 винтовой конвейер; 20 гипсоварочный котел;
21 – камера томления; 22 силос; 23 скребковый конвейер
Отличительной особенностью данной технологии является то, что дегидратации подвергается гипсовый камень больших размеров (100150 мм), а также возможность совмещения дегидратации и сушки в горизонтальном автоклаве. Сушка осуществляется импульсно-вакуумным методом, помол производится в шахтной мельнице 14, а выравнивание вещественного (модификационного) состава вяжущего в гипсоварочном котле 20.
Режим термообработки в автоклаве следующий: подъем давления до 0,6 МПа и выдержка при этом давлении и температуре 159С в течение 6 ч, сброс давления в течение 11,5 ч.
По такой технологии получают вяжущее со сроками схватывания: начало 520 мин, конец 1035 мин.
Достоинством этого технологического процесса является то, что по нему можно получать как высокопрочный, так и строительный гипс, используя только гипсоварочный котел.
А общим недостатком как данной, так и предыдущей технологии является большая длительность выдержки крупнокускового материала в автоклаве по сравнению с термообработкой тонкодисперсного сырья.
1.6.3. Технология производства высокопрочного гипса из фосфогипса
Процесс производства включает следующие стадии:
подача фосфогипса к месту переработки;
промывка фосфогипса;
приготовление рабочей пульпы;
автоклавная обработка пульпы;
фильтрация продукта после автоклавной обработки;
сушка и помол готового продукта.
К настоящему времени предложено достаточно большое количество технологических схем переработки фосфогипса, получаемого по дигидратной технологии. Имеются лишь небольшие отличия в способах и аппаратурном оформлении узлов промывки, фильтрации и сушки. Различаются также рекомендуемые для регулирования роста кристаллов CaSO4 · 0,5H2O добавки.
На рис. 1.19 представлена технологическая схема производства вяжущего из фосфогипса мощностью 120 тыс. т.
Рис. 1.19. Технологическая схема производства высокопрочного гипса
из дигидратного фосфогипса (спецификация по тексту)
Промытый фосфогипс из цеха экстракционной Н3РО4 поступает в первичный репульпатор 1, где его разбавляют основным фильтратом до отношения ж : т, равного 3, и насосом 2 перекачивают в сборник-запасник 3, из которого пульпу непрерывно подают на барабанный вакуум-фильтр 4. Кек фосфогипса подается в основной репульпатор 6, а жидкая фаза в емкость 5 и далее на станцию нейтрализации. После указанных технологических операций содержание водорастворимых фосфорсодержащих соединений в пересчете на Р2О5 в фосфогипсе не превышает 0,05%.
Пройдя такую дополнительную промывку, фосфогипс подается в репульпатор 6, где приготавливается рабочая пульпа с ж : т 1 и одновременным ее подогревом паром. Для защиты оборудования от коррозии вводят пассиватор НNO3.
Рабочая пульпа насосом 2 под давлением непрерывно подается в верхнюю часть вертикального автоклава 7. Регулирование рН среды осуществляют введением Н2SO4, а рост кристаллов NaКМЦ. В автоклаве пульпа нагревается острым паром и CaSO4 · 2H2O конвертируется в CaSO4 · 0,5H2O. Пульпа, содержащая полугидрат сульфата кальция, из нижней части автоклава под давлением поступает на ленточный вакуум-фильтр 8, на котором отделяют кристаллы CaSO4 · 0,5H2O, промывают, а затем подают на сушку в забрасывающее устройство 12 трубы-сушилки 14. Сушка производится дымовыми газами от сжигания топлива в топке 13. Промывные воды с ленточного фильтра через емкости 911 поступают в голову процесса.
Гипсовое вяжущее, выходящее из сушилки 14, улавливается в циклонах 15 и электрофильтре 18 и собирается в бункере 16.
Высушенный материал ленточным дозатором 17 подается в шаровую мельницу 19. Молотый продукт пневмокамерным насосом 20 направляется в силос 23, а аспирационный воздух очищается в фильтре 22 и вентилятором 21 сбрасывается в атмосферу.
Свойства получаемого таким образом высокопрочного гипса соответствуют маркам Г-10Г-19.