
- •Основные положения об асп
- •П ункт а Пункт б
- •Формирование канальных сигналов.
- •Для подавления fнес используют балансные схемы модулятора.
- •Восстановление fнес на приемном конце.
- •Подавление одной боковой полосы частот (обп).
- •Контрольные вопросы.
- •Многократное и групповое преобразование частот. Стандартные группы каналов
Многократное и групповое преобразование частот. Стандартные группы каналов
В аппаратуре современных многоканальных систем с частотным делением каналов (ЧД), как правило, используется многократное преобразование частоты. Это означает, что информационные сигналы в передающей части аппаратуры перемещаются несколько раз по шкале частот, прежде чем попадают в линию. Такое же многократное преобразование частоты, но в обратном порядке, осуществляется в приемной части аппаратуры.
Многократное преобразование частоты – необходимо для использования любого сколько угодно высокого диапазона частот в линии.
Структурная схема, поясняющая принцип многократного преобразования частоты в многоканальных системах, показана на рис. 1.7
Рис.1.7 - Структурная схема
В первой ступени, называемой ступенью индивидуального преобразования, каждые М исходных информационных сигналов многоканальной системы с общим числом каналов, кратным М, преобразуются в М канальных сигналов, размещенных в неперекрывающихся полосах частот. Эти сигналы объединяются в М-канальный групповой сигнал. Следующие ступени преобразования являются групповыми и предназначаются для создания из Р одинаковых по спектру М-канальных групповых сигналов общего группового Q канального сигнала (где Q = МР), затем для создания из R одинаковых по спектру Q-канальных групповых сигналов общего группового N-канального сигнала (где N = RQ = RMP) и т.д. Последняя ступень группового преобразования предназначается для преобразования спектров полученных многоканальных групповых сигналов, содержащих необходимое число канальных сигналов, в линейный спектр системы, предназначенный для передачи по линии.
Использование многократного и группового преобразования частоты позволяет наиболее рационально разместить спектры отдельных каналов в линейном спектре системы при помощи относительно простых канальных полосовых фильтров. Линейный спектр современных многоканальных систем распространяется вплоть до очень высоких частот. Если преобразовать спектр исходных сигналов сразу в этот спектр, то для возможности их разделения на приеме с помощью полосовых фильтров надо увеличивать защитные интервалы между каналами по мере повышения частоты. В противном случае крутизна нарастания затухания фильтров должна быть большей, чем выше расположена полоса их пропускания. При многократном преобразовании частоты каналы во всей линейной полосе частот могут располагаться с такими же, как в первой М-канальной группе, промежутками. Спектр же этой группы должен быть выбран таким образом, чтобы обеспечивались наилучшие условия работы канальных полосовых фильтров. Многократное и групповое преобразования частоты позволяют использовать для построения оконечной аппаратуры всех многоканальных систем стандартное преобразовательное оборудование.
Все многоканальные системы, имеющие число каналов 12 и выше, рассчитаны на число каналов, кратное 12, и комплектуются из соответствующего количества 12-канальных групп. Назначением 12-канальной группы является такое преобразование 12 исходных информационных сигналов в общий 12-канальный групповой сигнал, чтобы в спектре этого группового сигнала индивидуальные канальные сигналы располагались в неперекрывающихся частотных полосах. Таким образом, оборудование 12-канальной группы представляет собой оборудование индивидуального преобразования и позволяет преобразовать одинаковые полосы частот 12 исходных сигналов 0,3-3,4 кГц в общую полосу частот группового сигнала (сигнала первичной группы) 60-108 кГц.
Выбор полосы частот 12-канальной группы определяется рядом соображений. Во первых, как указывалось выше, метод передачи сигналов одной боковой полосой требует применения высокоселективных канальных полосовых фильтров. Такими фильтрами в начальный период разработки многоканальных систем современного типа могли быть только фильтры с кварцевыми резонаторами, для упрощения конструкции которых было желательно использовать спектр частот от 50-60 кГц до примерно 110 кГц). Во-вторых, полосу частот 12-канальной группы целесообразно выбрать так, чтобы в нее попадало минимальное количество гармоник и комбинационных частот; при использовании полосы частот 60-108 кГц с относительной шириной меньше одной октавы (108/60 <2) вторые и более высокие гармоники, а также многие комбинированные продукты располагаются за пределами полосы частот 12-канальной группы. На основании этих соображений МККТТ рекомендовал в качестве стандартного диапазона частот 12-канальной группы диапазон 60-108 кГц.
В многоканальных системах, построенных на основе использования индивидуального преобразовательного оборудования, формирующего стандартные 12-канальные (первичные) группы, все последующие ступени преобразования являются групповыми и предназначены для формирования более крупных групп каналов. Вторичная (60-канальная) группа в современных многоканальных системах формируется путем группового преобразования и объединения пяти 12-канальных групп и занимает стандартный диапазон частот 312-552 кГц, третичная (300-канальная) группа – путем группового преобразования и объединения пяти 60-канальных групп и занимает стандартный диапазон частот 812-2044 кГц. Все перечисленные группы каналов и их стандартные спектры соответствуют рекомендациям МККТТ и используются в многоканальных системах всех стран.
Линейный спектр конкретных многоканальных систем формируется из нескольких стандартных групп с соответствующим числом каналов путем их группового преобразования и переноса в соответствующие части линейного диапазона частот.
Использование многократного преобразования частоты и стандартных групп каналов дает возможность строить оконечную аппаратуру любых многоканальных систем на основе использования стандартного преобразовательного оборудования. Однако преимущества многократного и группового преобразования частоты заключаются не только в однотипности построения преобразовательного оборудования различных многоканальных систем. Этот метод дает возможность значительно сократить число типов фильтров и число номиналов несущих частот, необходимых для формирования линейного спектра многоканальной системы.
При групповом преобразовании частот возможны случаи, когда спектр группового сигнала, поступающего на вход преобразователя, частично совпадает со спектром полезной боковой полосы на его выходе. В этом случае вследствие «просачивания» непреобразованных сигналов с входа на выход преобразователя могут возникнуть переходные помехи между каналами. Для устранения таких помех используется дополнительная, промежуточная ступень группового преобразования.
При многократном преобразовании расположение каждого канала в линейном спектре частот характеризуется так называемой виртуальной несущей частотой данного канала. Виртуальная несущая частота представляет собой частоту, с помощью которой можно было бы путем однократного преобразования исходный спектр сигнала переместить в то положение, которое он занимает в линейном спектре и в которое он фактически перемещается путем многократного преобразования. Виртуальная несущая частота занимает в линейном спектре канала то положение, которое занимала бы в нем нулевая частота, если она имелась в спектре исходного сигнала.
Групповой тракт многоканальных систем, в котором передача многоканального сигнала осуществляется в линейном спектре частот, называется линейным трактом. В многоканальных системах он начинается входом усилителя передачи одной оконечной станции и заканчивается выходом усилителя приема другой станции. В состав линейного тракта входят участки линий связи и промежуточные усилители, устанавливающие групповой линейный сигнал.