
- •Действия с матрицами
- •Как можно отблагодарить автора?
- •Как вычислить определитель?
- •Как можно отблагодарить автора?
- •Свойства определителя. Понижение порядка определителя
- •Эффективные методы вычисления определителя
- •Определитель выгоднее раскрывать по той строке (столбцу), где:
- •Свойства определителя
- •При транспонировании матрицы величина её определителя не меняется
- •Если две строки (или два столбца) определителя поменять местами, то определитель сменит знак
- •Из строки (столбца) определителя можно вынести общий множитель
- •Если две строки (столбца) определителя пропорциональны (как частный случай – одинаковы), то данный определитель равен нулю
- •Определитель с нулевой строкой (столбцом) равен нулю
- •Какие свойства определителей полезно знать?
- •Понижение порядка определителя
- •К строке определителя можно прибавить другую строку, умноженную на ненулевое число. При этом величина определителя не изменится
- •К столбцу определителя можно прибавить другой столбец, умноженный на ненулевое число. При этом величина определителя не изменится
- •Как можно отблагодарить автора?
- •Как найти обратную матрицу?
- •Как можно отблагодарить автора?
- •Некоторые свойства операций над матрицами. Матричные выражения
- •Некоторые свойства операций над матрицами
- •Можно ли к матрице прибавить число?
- •Как возвести матрицу в квадрат?
- •Немного о некоммутативности матричного умножения и единичной матрице
- •Коммутативность числового множителя относительно умножения матриц
- •Как умножить три матрицы?
- •Как возвести матрицу в куб и более высокие степени?
- •Матричные выражения
- •Как можно отблагодарить автора?
- •Матричные уравнения. Примеры решений
- •Общие принципы решения матричных уравнений
- •Как решить матричное уравнение?
- •Как выполнить проверку?
- •Распространённый алгоритм решения матричного уравнения
- •Решение матричного уравнения вида
- •Решение матричного уравнения вида
- •Как можно отблагодарить автора?
- •Как решить систему линейных уравнений?
- •Решение системы линейных уравнений методом подстановки
- •Решение системы методом почленного сложения (вычитания) уравнений системы
- •Как можно отблагодарить автора?
- •Как решить систему линейных уравнений?
- •Решение системы линейных уравнений методом подстановки
- •Решение системы методом почленного сложения (вычитания) уравнений системы
- •Как можно отблагодарить автора?
- •Правило Крамера. Метод обратной матрицы
- •Решение системы по формулам Крамера
- •Решение системы с помощью обратной матрицы
- •Как можно отблагодарить автора?
- •Метод Гаусса (последовательного исключения неизвестных). Примеры решений для чайников
- •Как можно отблагодарить автора?
- •Решение систем линейных уравнений. Несовместные системы. Системы с общим решением. Частные решения
- •Как можно отблагодарить автора?
- •Как найти ранг матрицы?
- •Что такое ранг матрицы?
- •Как найти ранг матрицы с помощью миноров?
- •Алгоритм нахождения ранга матрицы с помощью миноров
- •Метод окаймляющих миноров
- •Как найти ранг матрицы с помощью метода Гаусса?
- •Какой метод использовать для нахождения ранга матрицы?
- •Как исследовать систему линейных уравнений на совместность?
- •Как можно отблагодарить автора?
- •Однородные системы линейных алгебраических уравнений
- •Что такое однородная система линейных уравнений?
- •Фундаментальная система решений однородной системы уравнений
- •Взаимосвязь решений неоднородной и соответствующей однородной системы уравнений
- •Как можно отблагодарить автора?
- •Метод Жордано-Гаусса. Как найти обратную матрицу с помощью элементарных преобразований?
- •Как найти обратную матрицу методом Гаусса?
- •Как можно отблагодарить автора?
- •Решение системы при различных способах выбора базиса
- •Как можно отблагодарить автора?
- •Собственные значения (числа) и собственные векторы. Примеры решений
- •Сколько у матрицы собственных чисел и собственных векторов?
- •Как найти собственные значения и собственные векторы матрицы?
- •Найти матрицу в базисе из собственных векторов
- •Как решать задачу в случае кратных собственных чисел?
- •Собственные векторы – это в точности векторы фундаментальной системы решений
- •Как можно отблагодарить автора?
- •Комплексные числа для чайников
- •Понятие комплексного числа
- •Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел
- •Тригонометрическая и показательная форма комплексного числа
- •Возведение комплексных чисел в степень
- •Извлечение корней из комплексных чисел. Квадратное уравнение с комплексными корнями
- •Как можно отблагодарить автора?
Как можно отблагодарить автора?
|
Некоторые свойства операций над матрицами. Матричные выражения
На базовых уроках Действия с матрицами, Как найти обратную матрицу? мы познакомились с понятием матрицы и основными операциями над матрицами. При этом основные акценты были подробно расставлены на технических приёмах вычисления, чтобы совершенно неподготовленный человек смог быстро научиться решать матрицы. Поэтому чайникам следует начать с первых двух статей и лягушатника с определителем матрицы. Из инструментальных средств рекомендую запастись матричным калькулятором, который позволит контролировать весь процесс решения и не допустить ошибок. Найти его можно, например, на складе математических формул и таблиц.
А сейчас последует продолжение темы, в котором мы рассмотрим не только новый материал, но и отработаем действия с матрицами.
Некоторые свойства операций над матрицами
Существует достаточно много свойств, которые касаются действий с матрицами, в той же Википедии можно полюбоваться стройными шеренгами соответствующих правил. Однако на практике многие свойства в известном смысле «мертвЫ», поскольку в ходе решения реальных задач используются лишь некоторые из них. Моя цель – рассмотреть прикладное применение свойств на конкретных примерах, и если вам необходима строгая теория, пожалуйста, воспользуйтесь другим источником информации.
Но сначала вернёмся к действиям с матрицами (к слову, в той статье мы уже неявно затронули ряд свойств). Начну с небольшого вопроса, который вызвал трудности у некоторых посетителей сайта:
Можно ли к матрице прибавить число?
Например:
.
Ну, или наоборот:
Нет. К матрице можно прибавить только другую матрицу, причём точно такого же размера.
Матрицу можно умножить на число. Но сложить их нельзя. Таковы правила игры.
Следует отметить, что допустимо
сложение определителя
матрицы с числом:
Результат вычисления определителя – число, а два числа суммируются без всяких проблем.
Вышесказанное, естественно, справедливо и для разности, ведь вычитание – это частный случай сложения.
Как на счёт того, чтобы плотно зависнуть у меня сегодня вечером? =) Практика показывает, что наибольшие трудности у студентов вызывает умножение матриц. Так наполним же кружки соответствующей информацией.
Повторим само правило. В статье Действия
с матрицами я рассказал
о том, какие матрицы можно умножать и
привёл ряд наиболее распространённых
примеров. Давайте рассмотрим операцию
чуть подробнее и выделим два существенных
пункта:
1) Смотрим на левую часть. Из первого урока нам известно, что матричное умножение возможно в том и только в том случае, если количество столбцов первой матрицыравно количеству строк второй матрицы.
2) Смотрим на правую часть и обращаем внимание на размерность результата –СКОЛЬКО строк и столбцов должно быть у итоговой матрицы.
Пример 1
Умножить матрицы
Решение: произведение существует,
причём итоговая матрица состоит из 1-ой
строки и 2-х столбцов:
Ответ:
Пример 2
Умножить матрицы
Это пример для самостоятельного решения.
Предложенные примеры не случайны. Они вроде бы просты, но у начинающих здесь нередко возникает путаница с размерами матрицы-результата. Поэтому читателям с небольшим опытом целесообразно переписать вышеприведённую формулу и особенно серьёзно отнестись к практическим примерам.
А по каким принципам составляются начинка (суммы произведений чисел), думаю, все уже поняли. Дополнительно возьмём на вооружение образную ассоциацию, которая поможет хорошо запомнить действие. Читаем следующий параграф: