
- •Действия с матрицами
- •Как можно отблагодарить автора?
- •Как вычислить определитель?
- •Как можно отблагодарить автора?
- •Свойства определителя. Понижение порядка определителя
- •Эффективные методы вычисления определителя
- •Определитель выгоднее раскрывать по той строке (столбцу), где:
- •Свойства определителя
- •При транспонировании матрицы величина её определителя не меняется
- •Если две строки (или два столбца) определителя поменять местами, то определитель сменит знак
- •Из строки (столбца) определителя можно вынести общий множитель
- •Если две строки (столбца) определителя пропорциональны (как частный случай – одинаковы), то данный определитель равен нулю
- •Определитель с нулевой строкой (столбцом) равен нулю
- •Какие свойства определителей полезно знать?
- •Понижение порядка определителя
- •К строке определителя можно прибавить другую строку, умноженную на ненулевое число. При этом величина определителя не изменится
- •К столбцу определителя можно прибавить другой столбец, умноженный на ненулевое число. При этом величина определителя не изменится
- •Как можно отблагодарить автора?
- •Как найти обратную матрицу?
- •Как можно отблагодарить автора?
- •Некоторые свойства операций над матрицами. Матричные выражения
- •Некоторые свойства операций над матрицами
- •Можно ли к матрице прибавить число?
- •Как возвести матрицу в квадрат?
- •Немного о некоммутативности матричного умножения и единичной матрице
- •Коммутативность числового множителя относительно умножения матриц
- •Как умножить три матрицы?
- •Как возвести матрицу в куб и более высокие степени?
- •Матричные выражения
- •Как можно отблагодарить автора?
- •Матричные уравнения. Примеры решений
- •Общие принципы решения матричных уравнений
- •Как решить матричное уравнение?
- •Как выполнить проверку?
- •Распространённый алгоритм решения матричного уравнения
- •Решение матричного уравнения вида
- •Решение матричного уравнения вида
- •Как можно отблагодарить автора?
- •Как решить систему линейных уравнений?
- •Решение системы линейных уравнений методом подстановки
- •Решение системы методом почленного сложения (вычитания) уравнений системы
- •Как можно отблагодарить автора?
- •Как решить систему линейных уравнений?
- •Решение системы линейных уравнений методом подстановки
- •Решение системы методом почленного сложения (вычитания) уравнений системы
- •Как можно отблагодарить автора?
- •Правило Крамера. Метод обратной матрицы
- •Решение системы по формулам Крамера
- •Решение системы с помощью обратной матрицы
- •Как можно отблагодарить автора?
- •Метод Гаусса (последовательного исключения неизвестных). Примеры решений для чайников
- •Как можно отблагодарить автора?
- •Решение систем линейных уравнений. Несовместные системы. Системы с общим решением. Частные решения
- •Как можно отблагодарить автора?
- •Как найти ранг матрицы?
- •Что такое ранг матрицы?
- •Как найти ранг матрицы с помощью миноров?
- •Алгоритм нахождения ранга матрицы с помощью миноров
- •Метод окаймляющих миноров
- •Как найти ранг матрицы с помощью метода Гаусса?
- •Какой метод использовать для нахождения ранга матрицы?
- •Как исследовать систему линейных уравнений на совместность?
- •Как можно отблагодарить автора?
- •Однородные системы линейных алгебраических уравнений
- •Что такое однородная система линейных уравнений?
- •Фундаментальная система решений однородной системы уравнений
- •Взаимосвязь решений неоднородной и соответствующей однородной системы уравнений
- •Как можно отблагодарить автора?
- •Метод Жордано-Гаусса. Как найти обратную матрицу с помощью элементарных преобразований?
- •Как найти обратную матрицу методом Гаусса?
- •Как можно отблагодарить автора?
- •Решение системы при различных способах выбора базиса
- •Как можно отблагодарить автора?
- •Собственные значения (числа) и собственные векторы. Примеры решений
- •Сколько у матрицы собственных чисел и собственных векторов?
- •Как найти собственные значения и собственные векторы матрицы?
- •Найти матрицу в базисе из собственных векторов
- •Как решать задачу в случае кратных собственных чисел?
- •Собственные векторы – это в точности векторы фундаментальной системы решений
- •Как можно отблагодарить автора?
- •Комплексные числа для чайников
- •Понятие комплексного числа
- •Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел
- •Тригонометрическая и показательная форма комплексного числа
- •Возведение комплексных чисел в степень
- •Извлечение корней из комплексных чисел. Квадратное уравнение с комплексными корнями
- •Как можно отблагодарить автора?
Как можно отблагодарить автора?
|
Комплексные числа для чайников
Не занимайтесь комплексными числами после комплексного обеда
На данном уроке мы познакомимся с понятием комплексного числа, рассмотрим алгебраическую, тригонометрическую и показательную форму комплексного числа. А также научимся выполнять действия с комплексными числами: сложение, вычитание, умножение, деление, возведение в степень и извлечение корня.
Не беспокойтесь, я вас напугал, я вас и рассмешу. Для освоения комплексных чисел не требуется каких-то специальных знаний из курса высшей математики, и материал доступен даже школьнику. Достаточно уметь выполнять основные алгебраические действия с «обычными» числами и немного рубить в тригонометрии. Впрочем, если что позабылось, я напомню.
Урок состоит из следующих параграфов: 1) Понятие комплексного числа. 2) Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел. 3) Тригонометрическая и показательная форма комплексного числа. 4) Возведение комплексных чисел в степень. 5) Извлечение корней из комплексных чисел. Квадратное уравнение с комплексными корнями.
На любой вкус и цвет – кому, что интересно. А комплексные числа действительно становятся наиболее интересной темой, после того, как студенты знакомятся с другими разделами высшей алгебры =). Если Вы являетесь чайником, или только-только приступили к изучению комплексных чисел, то параграфы лучше прочитать по порядку, без «перескоков».
Сначала вспомним «обычные» школьные
числа. В математике они называются множеством
действительных чисел и обозначаются
буквой
(в
литературе, рукописях заглавную букву
«эр» пишут жирной либо утолщённой). Все
действительные числа сидят на знакомой
числовой прямой:
Компания действительных чисел очень пёстрая – здесь и целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой прямой обязательно соответствует некоторое действительное число.
Понятие комплексного числа
Прежде чем, мы перейдем к рассмотрению комплексных чисел, дам важный совет: не пытайтесь представить комплексное число «в жизни» – это всё равно, что пытаться представить четвертое измерение в нашем трехмерном пространстве. Если хотите, комплексное число – это двумерное число. И курить бессмысленно. … Так, кто тут улыбается? Видимо, действительно не помогло.
Комплексным числом
называется
число вида
,
где
и
–
действительные числа,
–
так называемая мнимая единица.
Число
называется действительной
частью (
)комплексного
числа
,
число
называется мнимой
частью (
) комплексного
числа
.
–
это ЕДИНОЕ ЧИСЛО, а не сложение.
Действительную и мнимую части комплексного
числа, в принципе, можно переставить
местами:
или
переставить мнимую единицу:
–
от этого комплексное число не изменится. Но
стандартно комплексное число принято
записывать именно в таком порядке:
Чтобы всё было понятнее, сразу приведу
геометрическую интерпретацию. Комплексные
числа изображаются на комплексной
плоскости:
Как
упоминалось выше, буквой
принято
обозначать множество действительных
чисел.Множество же комплексных
чисел принято обозначать
«жирной» или утолщенной буквой
.
Поэтому на чертеже следует поставить
букву
,
обозначая тот факт, что у нас комплексная
плоскость.
Комплексная плоскость состоит из двух осей: – действительная ось – мнимая ось
Правила оформления чертежа практически такие же, как и для чертежа в декартовой системе координат (см. Графики и свойства элементарных функций). По осям нужно задать размерность, отмечаем:
ноль;
единицу по действительной оси;
мнимую единицу по мнимой оси.
Не нужно проставлять все значения: …–3,
–2, –1, 0, 1, 2, 3,… и
.
Да чего тут мелочиться, рассмотрим чисел десять.
Построим на комплексной плоскости
следующие комплексные
числа:
,
,
,
,
,
,
,
По
какому принципу отмечены числа на
комплексной плоскости, думаю, очевидно
– комплексные числа отмечают точно так
же, как мы отмечали точки еще в 5-6 классе
на уроках геометрии.
Рассмотрим
следующие комплексные числа:
,
,
.
Вы скажете, да это же обыкновенные
действительные числа! И будете почти
правы. Действительные числа – это
частный случай комплексных чисел.
Действительная ось
обозначает
в точности множество действительных
чисел
,
то есть на оси
сидят
все наши «обычные» числа. Более строго
утверждение можно сформулировать так:
Множество действительных чисел
является
подмножеством множества комплексных
чисел
.
Числа , , – это комплексные числа с нулевой мнимой частью.
Числа , , – это, наоборот, чисто мнимые числа, т.е. числа с нулевой действительной частью. Они располагаются строго на мнимой оси .
В числах , , , и действительная и мнимая части не равны нулю. Такие числа тоже обозначаются точками на комплексной плоскости, при этом, к ним принято проводить радиус-векторы из начала координат (обозначены красным цветом на чертеже). Радиус-векторы к числам, которые располагаются на осях, обычно не чертят, потому что они сливаются с осями.