Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника 26-35.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.82 Mб
Скачать

3.2.1. Сдвиговый регистр в динамическом режиме.

Режим сдвига вправо Режим сдвига влево Режим параллельной загрузки Режим хранения

Сброс

Последовательные (сдвигающие) регистры представляют собою цепочку разрядных схем, связанных цепями переноса. В однотактных регистрах со сдвигом на один разряд вправо слово сдвигается при поступлении синхросигнала. Вход и выход последовательные (DSR – Data Serial Right).

Согласно требованиям синхронизации в сдвигающих регистрах, не имеющих логических элементов в межразрядных связях, нельзя применять одноступенчатые триггеры, управляемые уровнем, поскольку некоторые триггеры могут за время действия разрешающего уровня синхросигнала переключиться неоднократно, что недопустимо. Появление в межразрядных связях логических элементов, и тем более, логических схем неединичной глубины упрощает выполнение условий работоспособности регистров и расширяет спектр типов триггеров, пригодных для этих схем. Многотактные сдвигающие регистры управляются несколькими синхропоследовательностями. Из их числа наиболее известны двухтактные с основным и дополнительным регистрами, построенными на простых одноступенчатых триггерах, управляемых уровнем. По такту С1 содержимое основного регистра переписывается в дополнительный, а по такту С2 возвращается в основной, но уже в соседние разряды, что соответствует сдвигу слова. По затратам оборудования и быстродействию этот вариант близок к однотактному регистру с двухступенчатыми триггерами.

Рисунок 1. Схема последовательного (сдвигового) регистра

Рисунок 3. Временная диаграмма работы сдвигового регистра

31.

    1. ОДНОФАЗНЫЙ МОСТОВОЙ ВЫПРЯМИТЕЛЬ

Однофазный мостовой выпрямитель (рис. 2.(в)) является двухполупериодным выпрямителем, питаемым от однофазной сети. В отличие от предыдущей схемы его можно использовать для выпрямления напряжения сети и без трансформатора. К его недостаткам относится удвоенное число выпрямительных диодов, однако трансформатор в таком выпрямителе используется наиболее полно, так как нет подмагничивания магнитопровода постоянным током и ток во вторичной обмотке протекает в течение обоих полупериодов. Из-за увеличенного падения напряжения на выпрямительных диодах такие выпрямители редко используются при выпрямлении низких напряжения (меньше 5В).

Временная диаграмма работы однофазного мостового выпрямителя представлена на рис. 3.6. Она практически не отличается от временной диаграммы двухполупериодного выпрямителя, только лишь отмечено прохождение тока через пары диодов VD1, VD3 и VD2, VD4, а также видно, что обратное напряжение на закрытом диоде Ub.max уменьшилось.

Среднее значение выпрямленного напряжения такое же, как в предыдущей схеме

.

Рис. 3.6. Временная диаграмма работы однофазного мостового выпрямителя

Уравнение внешней характеристики

, (3.14)

где Ud0 – напряжение холостого хода выпрямителя;

ra – активное сопротивление трансформатора;

rпр – прямое динамическое сопротивление диодов;

Id – ток нагрузки.

Как следует из выражения (3.14) внешняя характеристика выпрямителя, работающего на активную нагрузку, представляет собой прямую линию. Примерный вид внешней характеристики представлен на рис. 3.7.

Рис. 3.7. Внешняя характеристика выпрямителя с активной нагрузкой

Среднее значение тока диода  .

Максимальное обратное напряжение на диоде равно амплитудному значению напряжения вторичной обмотки

.

Подмагничивания сердечника трансформатора нет, что является существенным преимуществом данной схемы. Подробнее рассмотрим режим работы трансформатора. Действующее значение тока вторичной обмотки

.

Действующее значение напряжения вторичной обмотки трансформатора

.

Расчетная мощность вторичной обмотки трансформатора

,

где Pd = Ud×Id – мощность постоянного тока в нагрузке.

Расчетная мощность первичной обмотки

.

Расчетная (типовая) мощность трансформатора

.

Коэффициент использования трансформатора по мощности

.

Для удобства сравнения различных схем выпрямителей составим таблицу основных электрических параметров.

Таблица 3.1

Основные электрические параметры однофазных выпрямителей

Схема выпрямителя

Трансформатор

Диоды

Нагрузка КП(1)

Ud/U2

I2/Id

I1/nId

S1/Pd

S2/Pd

ST/Pd

Ub.max Ud

Ia/Id

Однофазная однополупериодная

0,45

1,57

1,21

2,69

3,49

3,09

1,57

1,57

Однофазная двухполупериодная

0,9

0,79

1,11

1,23

1,73

1,48

3,14

0,5

0,667

Однофазная мостовая

0,9

1,11

1,11

1,23

1,23

1,23

1,57

0,5

0,667

Проведённый анализ работы схем выпрямителей не учитывал влияние на выходное напряжение выпрямителя внутреннего сопротивления трансформатора и сопротивления диодов, а также потерь из-за прямого падения напряжения на открытых диодах.

На холостом ходу выпрямителя выходное напряжение будет меньше расчётного на величину прямого падения напряжения на открытых диодах. Для однополупериодной и двухполупериодной схемы последовательно с нагрузкой включён только один диод, а в мостовой схеме – два. Поэтому мостовая схема для малых выходных напряжений не применяется, так как падение напряжения на двух диодах существенно снижает коэффициент полезного действия схемы. Предположим, выходное напряжение выпрямителя равно 3 В. На каждом из диодов мостовой схемы прямое падение напряжения составит около 1 В, итого 2 В. То есть трансформатор должен иметь на вторичной обмотке запас по напряжению в 40% из-за потерь в диодах.

Под нагрузкой выходное напряжение выпрямителя начнёт уменьшаться из-за потерь напряжения на внутреннем сопротивлении трансформатора и диодов. Зависимость выходного напряжения выпрямителя от тока нагрузки называется внешней характеристикой.

32.