Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_K_Magistrature.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
508.41 Кб
Скачать

7. Основные структуры данных – деревья, бинарные деревья. Основные операции Примеры использования

Дерево — структура, отображающая в памяти некоторый граф, не имеющий циклов и у которого в каждый узел входит не более одного ребра.

Бинарное дерево — это динамическая структура данных, состоящая из узлов, каждый из которых содержит, кроме данных, не более двух ссылок на различные бинарные деревья. На каждый узел имеется ровно одна ссылка. Начальный узел называется корнем дерева. Узел, не имеющий поддеревьев, называется листом. Исходящие узлы называются предками, входящие — потомками. Высота дерева определяется количеством уровней, на которых располагаются его узлы.

Если дерево организованно таким образом, что для каждого узла все ключи его левого поддерева меньше ключа этого узла, а все ключи его правого поддерева — больше, оно называется деревом поиска. Одинаковые ключи не допускаются. В дереве поиска можно найти элемент по ключу, двигаясь от корня и переходя на левое или правое поддерево в зависимости от значения ключа в каждом узле. Такой поиск гораздо эффективнее поиска по списку, поскольку время поиска определяется высотой дерева, а она пропорциональна двоичному логарифму количества узлов.

Дерево является рекурсивной структурой данных, поскольку каждое поддерево также является деревом. Действия с такими структурами изящнее всего описываются с помощью рекурсивных алгоритмов.

Дерево называется сбалансированным тогда и только тогда, когда для каждого узла высота его поддеревьев различается не более чем на 1.

Дерево называется не сбалансированным тогда, когда длины правой и левой ветвей отличается более чем на единицу. Красным отмечен узел, для которого не выполняется условие сбалансированности.

Дерево называется идеально сбалансированным, если для каждого его узла количество узлов в его поддеревьях различается не более чем на 1.

Для бинарных деревьев определены операции:

создание дерева; включения узла в дерево;

поиска по дереву;

обхода дерева;

определение количества узлов в дереве;

удаление дерева; удаления узла.

Для каждого рекурсивного алгоритма можно создать его нерекурсивный эквивалент.

8. Основные структуры данных – стек, очередь. Операции над ними.

Стек — динамическая структура данных, представляющая из себя упорядоченный набор элементов, в которой добавление новых элементов и удаление существующих производится с одного конца, называемого вершиной стека.

Стек — это частный случай однонаправленного списка, добавление элементов в который и выборка из которого выполняется с конца, называемого вершиной стека. Другие операции со стеком не определены. При выборке элемент исключается из стека. Говорят, что стек реализует принцип обслуживания LIFO (last in — first out, последним пришел — первым ушел). Стек проще всего представить себе как закрытую с одного конца узкую трубу, в которую бросают мячи. Достать первый брошенный мяч можно только после того, как вынуты все остальные. Стеки широко применяются в системном программном обеспечении, компиляторах, в различных рекурсивных алгоритмах.

Стек можно организовать на базе любой структуры данных, где возможно хранение нескольких однотипных элементов и где можно реализовать определение стека: линейный массив, типизированный файл, однонаправленный или двунаправленный список. В нашем случае наиболее подходящим для реализации стека является однонаправленный список, причём в качестве вершины стека выберем начало этого списка.

Выделим типовые операции над стеком и его элементами:

-добавление элемента в стек;

-удаление элемента из стека;

-проверка, пуст ли стек;

-просмотр элемента в вершине стека без удаления;

-очистка стека.

Очередь — частный случай однонаправленного списка, добавление элементов в который выполняется в один конец, а выборка — из другого конца. Другие операции с очередью не определены. При выборке элемент исключается из очереди. Очередь реализует принцип обслуживания FIFO (first in — first out, первым пришел — первым ушел). Очередь проще всего представить себе, постояв в ней час-другой. В программировании очереди применяются, например, при моделировании, диспетчеризации задач ОС, буферизованном вводе/выводе.

Добавлять новые элементы можно только в конец очереди, забирать элементы можно только из начала. В отличие от обычной очереди, которую всегда можно при желании покинуть, из середины программистской очереди удалять элементы нельзя.

В случае очереди наиболее популярны две реализации: непрерывная на базе массива, которую называют также реализацией на базе кольцевого буфера, и ссылочная реализация, или реализация на базе списка.

Элементы очереди будем также хранить в массиве. При этом из очереди удаляется первый элемент, и, чтобы не сдвигать все элементы очереди, будем в отдельном поле m_start хранить индекс элемента массива, с которого начинается очередь. При удалении элементов, очередь будет "ползти" дальше от начала массива. Чтобы при этом не происходил выход за границы массива, замкнем массив в кольцо: будем считать, что за последним элементом массива следует первый.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]