
- •Программирование
- •1.Функции и процедуры в языках программирования.Передача параметров по значению и по ссылке.
- •3. Переменные в языках программирования. Имя, тип и значение переменной. Область видимости и время жизни переменной.
- •4. Среда вводв/вывода в современных языках программирования. Текстовые и двоичные файлы. Чтение, запись и позиционирование файлов.
- •5. Рекурсивные функции и алгоритмы. Примеры рекурсивных алгоритмов и программ
- •6. Основные структуры данных – линейные, односвязные и двусвязные списки. Основные операции. Примеры использования.
- •7. Основные структуры данных – деревья, бинарные деревья. Основные операции Примеры использования
- •8. Основные структуры данных – стек, очередь. Операции над ними.
- •9. Основные принципы ооп. Инкапсуляция, полиморфизм, наследование.
- •10. Статические и виртуальные методы класса. Иерархические библиотеки классов.
- •Базы данных
- •Основные понятия баз данных. Роль и место систем управления базами данных (субд). Этапы развития субд.
- •Субд должна удовлетворять выявленным и вновь возникающим требованиям конечных пользователей.
- •Основные функции и возможности субд. Наиболее распространенные сегодня субд и области их использования.
- •Реляционная модель данных. Понятия таблица, ключ, кортеж, атрибут, домен. Фундаментальные свойства отношений.
- •Фундаментальные свойства отношений
- •Основы реляционной алгебры. Операторы реляционной алгебры. Нормализация отношений. Операторы реляционной алгебры
- •Классификация моделей данных. Модель «Объект – свойство – отношение». Проектирование схемы базы данных.
- •Обеспечение целостности данных. Архитектура и модели "клиент-сервер" в технологии бд.
- •Язык sql. Назначение и основные операторы языка sql. Представления.
- •Понятие транзакции и ее свойства. Операторы commit, rollback.
- •Операционные системы, среды и оболочки
- •Назначение и основные функции операционных систем. Основные понятия – процесс, файл, пользователь.
- •Классификация операционных систем. Наиболее важные современные ос, их области использования.
- •Файловые системы ос. Основные функции и требования к файловым системам.
- •Управление процессами в ос. Жизненный цикл процесса. Рождение процесса, состояние ожидания, выполнение, окончание процесса. Виртуальная память процесса.
- •5. Механизмы синхронизации и обмена информацией между процессами (ipc). Разделяемая память, семафоры, именованные и неименованные каналы.
- •Пользователи компьютера. Имена, пароли, права пользователей. Управление доступом к компьютеру.
- •Пользовательский интерфейс ос. Командная строка, графический пользовательский интерфейс (gui). Основные элементы gui – окно, меню, кнопки, списки и т.Д.
- •Поддержка сетевых технологий в ос. Сетевые операционные системы. Сетевые службы – экспортируемые файловые системы, электронная почта, www-серверы.
- •Безопасность и надежность операционных систем. Способы создания информационных систем высокой надежности.
- •«Проектирование информационных систем»
- •Жизненный цикл программного изделия – анализ требований, проектирование, программирование, тестирование, эксплуатация и сопровождение. Модели жизненного цикла.
- •Сущность структурного и объектно-ориентированного подходов к проектированию информационных систем.
- •Диаграммы потоков данных (dfd). Основные и вспомогательные объекты диаграмм. Построение функциональной модели в виде иерархии диаграмм потоков данных.
- •Диаграммы потоков данных (dfd)
- •Объекты диаграмм.
- •Диаграммы «сущность – связь» (erd). Типы отношений (один к одному, один ко многим, многие ко многим). Построение схемы базы данных на основе erd диаграмм.
- •Теория систем и системный анализ
- •Основные понятия, характеризующие строение и функционирование системы
- •Понятие общесистемных закономерностей.
- •Основные преимущества и принципы системного подхода.
- •Методика системного анализа
- •Качественные методы описания систем. Метод мозговой атаки или коллективной генерации идей. Метод экспертных оценок. Метод «Дельфи».
- •Кибернетический подход к описанию систем.
- •Особенности анализа и синтеза технических систем.
- •Особенности анализа и синтеза эргатических систем.
- •Особенности анализа и синтеза организационных систем.
- •Основы теории управления
- •Понятие об управляемой системе. Примеры управляемых систем.
- •Функции управления.
- •Управление в технических системах. Задачи стабилизации и слежения.
- •Управление в человеко-машинных системах. Понятие о человеческом факторе.
- •Понятие об оптимальном управлении. Показатели и критерии управления.
Диаграммы потоков данных (dfd). Основные и вспомогательные объекты диаграмм. Построение функциональной модели в виде иерархии диаграмм потоков данных.
Диаграммы потоков данных (DFD) (Data Flow Diagrams) являются основным средством моделирования функциональных требований проектируемой системы. С их помощью эти требования разбиваются на функциональные компоненты (процессы) и представляются в виде сети, связанной потоками данных. Главная цель таких средств ≈ продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами.
Для изображения DFD традиционно используются две различные нотации: Иодана(Yourdon) и Гейна-Сарсона (Gane-Sarson). Далее при построении примеров будет использоваться нотация Иодана, все исключения будут предварительно оговариваться.
Диаграммы потоков данных (dfd)
Диаграммы потоков данных (DFD)≈ наиболее известные и часто используемые средства функционального моделирования.
Объекты диаграмм.
Нотации Йодана (Yourdon) и Гейна-Сарсона (Gane-Sarson). Основные символы:
:
Основные символы: поток данных; процесс; хранилище (накопитель) данных; внешняя сущность (терминатор).
Потоки данных: механизмы, использующиеся для моделирования передачи информации из одной части системы в другую. Изображение: именованные направленные стрелки. Процесс: назначение – продуцирование выходных потоков из входных в соответствии с действием, задаваемым именем процесса.
Хранилище: позволяет определять данные, которые будут сохраняться в памяти между процессами.
Терминатор: сущность вне контекста системы, являющуюся источником или приемником системных данных.
Декомпозиция DFD осуществляется на основе процессов: каждый процесс может раскрываться с помощью DFD нижнего уровня.
Построение функциональной модели в виде иерархии диаграмм. Рекомендуется: размещать на каждой диаграмме от 3 до 7 процессов; избегать несущественных на данном уровне деталей; декомпозицию потоков данных выполнять одновременно с декомпозицией процессов (т.е. параллельно); избегать аббревиатур, имена подбирать по существу; не дублировать определения функционально идентичных процессов, ссылаться на имеющиеся на более высоком уровне; пользоваться простейшими диаграммными техниками, не пренебрегать DFD; отделять управление структуры от обрабатывающих структур (т.е. процессов), локализовать управляющие структуры.
Диаграммы «сущность – связь» (erd). Типы отношений (один к одному, один ко многим, многие ко многим). Построение схемы базы данных на основе erd диаграмм.
Диаграммы “сущность-связь” (ERD) предназначены для разработки моделей данных и обеспечивают стандартный способ определения данных и отношений между ними. Фактически с помощью ERD осуществляется детализация хранилищ данных проектируемой системы, а также документируются сущности системы и способы их взаимодействия, включая идентификацию объектов, важных для предметной области (сущностей), свойств этих объектов (атрибутов) и их отношений с другими объектами(связей).
Данная нотация была введена Ченом (Chen) и получила дальнейшее развитие в работах Баркера (Barker). Нотация Чена предоставляет богатый набор средств моделирования данных, включая ERD, диаграммы атрибутов, диаграммы декомпозиции. Эти диаграммные техники используются для проектирования реляционных баз данных.
Сущности, отношения и связи в нотации Чена
Сущность представляет собой множество экземпляров реальных или абстрактных объектов (людей, событий, состояний, идей, предметов и т.п.), обладающих общими атрибутами или характеристиками. Любой объект системы может быть представлен только одной сущностью, которая должна быть уникально идентифицирована. При этом имя сущности должно отражать тип или класс объекта, а не его конкретный экземпляр (например, АЭРОПОРТ, а не ВНУКОВО).
Отношение в самом общем виде представляет собой связь между двумя и более сущностями. Именование отношения осуществляется с помощью грамматического оборота глагола (ИМЕЕТ, ОПРЕДЕЛЯЕТ, МОЖЕТ ВЛАДЕТЬ и т.п.).
Типы отношений:
1) 1*1 (один-к-одному). Отношения данного типа используются, как правило, на верхних уровнях иерархии модели данных, а на нижних уровнях встречаются сравнительно редко.
2) 1*п (один-к-многим). Отношения данного типа являются наиболее часто используемыми.
3) n*m (многие-к-многим). Отношения данного типа обычно используются на ранних этапах проектирования с целью прояснения ситуации. В дальнейшем каждое из таких отношений должно быть преобразовано в комбинацию отношений типов 1 и 2 (возможно, с добавлением вспомогательных ассоциативных сущностей и с введением новых отношений).
Пример: каждый БАНК ИМЕЕТ один или более БАНКОВСКИХ СЧЕТОВ. Кроме того, каждый КЛИЕНТ МОЖЕТ ВЛАДЕТЬ (одновременно) одной или более КРЕДИТНОЙ КАРТОЙ и одним или более БАНКОВСКИМ СЧЕТОМ, каждый из которых ОПРЕДЕЛЯЕТ в точности одну КРЕДИТНУЮ КАРТУ (отметим, что у клиента может и не быть ни счета, ни кредитной карты). Каждая КРЕДИТНАЯ КАРТА ИМЕЕТ только один зависимый от нее ПАРОЛЬ КАРТЫ, а каждый КЛИЕНТ ЗНАЕТ (но может и забыть) ПАРОЛЬ КАРТЫ.
Различают концептуальные и физические ER-диаграммы. Концептуальные диаграммы не учитывают особенностей конкретных СУБД. Физические диаграммы строятся по концептуальным и представляют собой прообраз конкретной базы данных. Сущности, определенные в концептуальной диаграмме становятся таблицами, атрибуты становятся колонками таблиц (при этом учитываются допустимые для данной СУБД типы данных и наименования столбцов), связи реализуются путем миграции ключевых атрибутов родительских сущностей и создания внешних ключей. Учитывает такие особенности СУБД, как допустимые типы и наименования полей и таблиц, ограничения целостности и т.п.
Построение схемы базы данных на основе ERD диаграмм:
При разработке ER-моделей мы должны получить следующую информацию о предметной области:
Список сущностей предметной области.
Список атрибутов сущностей.
Описание взаимосвязей между сущностями.
ER-диаграммы удобны тем, что процесс выделения сущностей, атрибутов и связей является итерационным. Разработав первый приближенный вариант диаграмм, мы уточняем их, опрашивая экспертов предметной области. При этом документацией, в которой фиксируются результаты бесед, являются сами ER-диаграммы.