Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Д. Швагер_Теханализ. Ч.2.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
6.31 Mб
Скачать

Глава 20. Тестирование и оптимизация торговых систем 699

му системы (с наименьшим возможным количеством параметров), кото­рая не подразумевает существенного ухудшения результативности по сравнению с более сложными вариантами. Однако не стоит отбрасы­вать значимые параметры ради сокращения объема необходимых тес­тов. Следовало бы заметить, что даже в простой системе с одним или двумя наборами параметров нет необходимости в тестировании всех возможных комбинаций. Например, в простой системе пробоя, когда кто-то хочет протестировать результативность при значениях N от еди­ницы до ста, нет никакой необходимости тестировать каждое значение в этом ряду. Намного более эффективным подходом оказалось бы вна­чале протестировать систему с некоторым шагом для значений N (на­пример, 10, 20, 30... 100), а затем, при желании, трейдер может со­средоточиться на любых областях, которые покажутся интересными. Например, если система, в частности, показывает лучшую результатив­ность при значениях параметра N = 40 и N = 50, трейдер может захо­теть также протестировать другие значения N из этого суженного диа­пазона. Однако подобный дополнительный шаг, видимо, излишен, по­скольку, как будет видно из продолжения этой главы, разница в резуль­тативности близких наборов параметров, вероятно, является случайной величиной и лишена какого-либо значения.

В качестве более практического примера из реальной жизни пред­ставим, что мы хотим протестировать систему пересечения скользящих средних, которая включает в себя правило подтверждения с времен­ной задержкой. Если бы мы поинтересовались результативностью сис­темы при значениях параметров от 1 до 50 для краткосрочной сколь­зящей средней, от 2 до 100 для более долгосрочной скользящей сред­ней и от 1 до 20 для временной задержки, образовалось бы 74 500 наборов параметров*.

Очевидно, было бы невозможным протестировать, даже не сравни­вая результаты, все эти комбинации. Заметьте, что мы не можем умень­шить количество параметров, не разрушив основную структуру системы. Однако мы можем протестировать ограниченное количество наборов параметров, что давало бы очень хорошее приближение обшей резуль­тативности системы. Например, мы могли бы использовать шаги в 10 для краткосрочной скользящей средней (10, 20, 30, 40 и 50), шаги в 20 для долгосрочной скользящей средней (20, 40, 60, 80 и 100) и три выбран­ных значения для временной задержки (например, 5, 10 и 20). При этом количество тестируемых наборов параметров снизилось бы до 57**.

* Чтобы избежать двойного счета, каждая «краткосрочная» скользящая сред-

няя должна комбинироваться только с «долгосрочной» скользящей средней большей длины. Таким образом, общее количество комбинаций дается фор­мулой (99 + 98 + 97 + ... + 50) х 20 = 74 500. (5 + 4 + 4 + 3 + 3) х 3 = 57.

700 ЧАСТЬ 4. торговые системы и измерение эффективности торговли

После проведения тестов по этим наборам параметров результаты должны быть проанализированы, и далее на основании оценки может быть протестировано умеренное количество дополнительных наборов параметров. Например, если временная задержка, равная 5, — наи­меньшее из протестированных значений — дает наилучшие результаты, то было бы разумно протестировать меньшие значения временной за­держки.

С концептуальной точки зрения могло бы быть полезным опреде­лить четыре типа параметров.

Непрерывный параметр. Непрерывный параметр может подразу­мевать использование любого значения из данного диапазона. Процен­тный ценовой пробой был бы примером непрерывного параметра. По­скольку непрерывный параметр может предполагать бесконечное чис­ло значений, необходимо определить некоторый шаг — интервал в те­стировании подобного параметра. Например, параметр процентного пробоя может быть протестирован в диапазоне от 0,005 до 0,50% с шагом в 0,05% (т.е. 0,05; 0,10 ... 0,50). Будет разумным ожидать, что при малых изменениях в значении параметра результативность будет меняться незначительно (предполагая тестовый период существенной длительности).

Дискретный параметр. Дискретный параметр подразумевает толь­ко целые значения. Например, количество дней в системе пробоя — это дискретный параметр. Хотя можно протестировать дискретный па­раметр для каждого целочисленного значения внутри заданного диапа­зона, такая детализация часто не нужна, и, как правило, используется более разреженная выборка. Как и в случае с непрерывными парамет­рами, при малом изменении значения параметра будет разумным ожи­дать небольших изменений результативности системы.

Кодовый параметр. Кодовые параметры используются для описания классификационных различий в определениях торговых правил. Таким образом, кодовому параметру можно присвоить любое математическое значение. В качестве примера кодового параметра предположим, что мы хотим протестировать простую систему пробоя, используя три раз­личных определения пробоя (случай покупки): закрытие дня превыша­ет максимум предшествующих N дней, дневной максимум превышает предшествующий N-дневный максимум и закрытие дня превышает наи­большее закрытие предшествующих N-дней. Мы могли бы протестиро­вать в отдельности каждую из этих систем, но удобнее было бы исполь­зовать параметр для идентификации подразумеваемого определения. Таким образом, значение параметра, равное нулю, указывало бы на первое определение, значение, равное 1 — на второе определение и