
- •Введение радиометрия, ее развитие и задачи
- •Раздел 1. Эталоны и образцовые средства измерения
- •Раздел 2. Статистическая обработка результатов радиометрических измерений
- •2.1. Статистический характер радиоактивного распада
- •2.2. Статистические законы распределения
- •2.3. Статистические характеристики экспериментальных данных
- •Тема 3. Основные радиометрические понятия и определения
- •3.1.Единицы измерения активности и удельных активностей
- •3.2. Специальные единицы измерения
- •3.3. Взаимодействие излучений с веществом
- •Раздел 4. Методы регистраци ионизирующих излучений
- •4.1. Классификация методов регистрации ионизирующих излучений и основные термины
- •4.2. Основные характеристики детекторов ионизирующего излучения
- •4.3. Ионизационный метод регистрацииионизирующего излучения
- •4.3.1. Физические основы обнаружения излучений
- •4.3.2. Типичная вольт-амперная характеристикака газового разряда
- •4.3.3. Ионизационные камеры
- •4.3.4. Методы регистрации с газовым усилением пропорциональные счетчики
- •4.3.5. Газоразрядные счетчики Гейгера–Мюллера
- •4.4. Оптический метод регистрации ионизирующих излучений
- •4.4.1. Общие характеристики сцинтилляторов
- •4.4.2. Основные свойства органических сцинтилляторов
- •4.4.3. Основные свойства неорганических сцинтилляторов
- •4.4.4. Сцинтилляционные счетчики
- •4.4.5. Особенности применения сцинтилляционных счетчиков
- •Раздел 4.5. Полупроводниковые детекторы
- •4.5.1. Принцип работы ппд
- •4.5.2. Основные типы ппд Характеристики кремния и германия
- •Переходы в полупроводниках
- •Влияние шумов на энергетическое разрешение
- •Радиационные повреждения детекторов
- •4.8. Счетчики черенкова
- •5.4. Спектрометрия ионизирующих излучений
- •5.4.1. Основные методы гамма спектрометрии постановка измерительной задачи и ее решение спектрометрическим методом
- •Оценка энергетического состава -квантов по функциям пропускания
- •Измерение по продуктам фотоядерных реакций
- •Однокристальные сцинтилляционные гамма-спектрометры
- •Спектрометрия цезия–137
- •2.6. Детекторы гамма-излучения
- •1) Сцинтилляционные. 2)Полупроводниковые.
- •Методы обработки гамма-спектров Классический метод обработки спектров гамма-излучения
- •Матричный метод обработки сцинтилляционных гамма-спектров.
- •Генераторный метод обработки сцинтилляционных гамма-спектров
- •5.5.2. Спектрометрия заряженных частиц
- •Определение энергии заряженных частиц по пробегу и плотности ионизации
- •Измерение энергии частиц с помощью ионизационных камер, сцинтилляционных и полупроводниковых счетчиков
- •Измерение энергии тяжелых заряженных частиц
- •Измерение энергии электронов
- •Измерение энергии заряженных частиц с помощью магнитных спектрометров
- •Магнитные спектрометры для b- и a-спектрометрии
- •5.5.2.1. .Методы и средства измерения 90sr
- •1.Некоторые сведения о стронции-90
- •1.2. Стронций-90 в организме человека.
- •1.3. Стронций-90 во внешней среде
- •5.5.2.1. Методы измерения 90sr
- •2.1. Основные положения
- •2.2 Матричный метод обработки бета-спектров
- •6. Приготовление радиоактивных источников
- •6.1. Типы радиоактивных источников.
- •6.2. Приготовление альфа–бета-источников
- •6.3. Приготовление гамма-источников
- •7. Поверка эталонов и рабочих источников
- •Поверка альфа–источников
- •Поверка гамма–источников
- •Часть III методы проведения некоторых ядерно-физических измерений
- •Глава 10
- •Измерение активности источников
- •§ 10.1. Основные определения
- •§ 10.2. Общие характеристики методов измерения активности
- •§ 10.3. Измерение активности источников альфа-частиц
- •§ 10.4. Измерение активности источников бета-частиц
- •§ 10.5. Измерение активности источников гамма-излучения
3.3. Взаимодействие излучений с веществом
Термин «радиация» происходит от латинского слова radius и означает луч. В самом широком смысле слова радиация охватывает все существующие в природе виды излучений — радиоволны, инфракрасное излучение, видимый свет, ультрафиолет и, наконец, ионизирующее излучение. Все эти виды излучения, имея электромагнитную природу, различаются длиной волны, частотой и энергией (рис 5).
Рис. Виды электромагнитных излучений
Рис.5. Виды излучений.
Существуют также излучения, которые имеют другую природу и представляют собой потоки различных частиц, например, альфа-частиц, бета-частиц, нейтронов и т.д.
Каждый раз, когда на пути излучения возникает барьер, оно передает часть или всю свою энергию этому барьеру. И от того, насколько много энергии было передано и поглощено в организме, зависит конечный эффект облучения.
Для здоровья человека наиболее опасны ионизирующие виды излучения. Проходя через ткань, ионизирующее излучение ионизирует атомы в молекулах, которые играют важную биологическую роль. Поэтому облучение любыми видами ионизирующего излучения влияет на здоровье человека. К их числу относятся:
Альфа-излучение – это тяжелые, положительно заряженные частицы, состоящие из двух протонов и двух нейтронов, крепко связанных между собой. В природе альфа-частицы возникают в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит до 10 см и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи(эпидермисом). Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или вдыхаемым воздухом, оно облучает внутренние органы и становится наиболее потенциально опасным. Скорость движения альфа–частиц около 16000 км/с.
Бета-излучение – это электроны (позитроны), которые значительно меньше альфа-частиц (их масса в 1840 раз меньше альфа–частицы) и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Если вещество, испускающее бета-частицы, попадет в организм, оно будет интенсивно облучать внутренние ткани. Скорость движения бета – частиц в среднем равна 160000 км/с.
Гамма-излучение — это фотоны, т.е. электромагнитная волна, несущая импульсы электромагнитной энергии (фотонное излучение сверхвысокочастотных энергий). В воздухе оно может проходить большие расстояния (сотни метров), постепенно теряя энергию в результате столкновений с атомами среды. Гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения. Скорость движения гамма-квантов всегда равна 300000 км/с.
Рентгеновское излучение (фотонное излучение) аналогично гамма-излучению, испускаемому ядрами, но оно получается искусственно в рентгеновской трубке, которая сама по себе не радиоактивна или при торможении заряженных частиц электрическим полем ядер (тормозное излучение).
Нейтронное излучение образуется в процессе деления атомного ядра и обладает высокой проникающей способностью. Нейтроны можно остановить толстым бетонным, водяным или парафиновым барьером. К счастью, в мирной жизни нигде, кроме как непосредственно вблизи ядерных реакторов, нейтронное излучение практически не существует.
Рис.6. Ионизирующие излучения и их проникающая способность
В отношении рентгеновского и гамма-излучения
часто употребляют определения «жёсткое»
и «мягкое». Это относительная
характеристика энергии и связанной с
ней проникающей способности излучения.
«Жёсткое» — большие энергия и проникающая
способность, Е
0,25
МэВ; «мягкое» — меньшие энергии, Е
0,25
МэВ.
Рис. 7. Три вида радиоактивных излучений и их свойства.
Взаимодействие излучений с веществом приводит к возбуждению или, как правило, к ионизации встречных атомов и молекул поглощающей среды.
При взаимодействии бета-частиц с веществом, вследствие их неодинаковой энергии, они легко рассеиваются веществе и затормаживаются на различных расстояниях. Их действительные пути оказываются в 1,5–4 раза больше толщины поглотителя. Поэтому пробег бета-частиц нельзя однозначно характеризовать длиной пробега. Явление рассеивания приводит к тому, что даже частицы с одинаковой энергией проходят в веществе совершенно разные по протяженности пути. Экспоненциальная зависимость ослабления бета-частиц может быть записана в виде:
Il
= I0
·e-
l,
где, Il и I0 – число падающих на поглотитель частиц и число прошедших сквозь него, l–толщина поглотителя (см), – справочный коэффициент.
Обычно величину максимального пробега бета-частиц определяют как слой половинного ослабления, то есть слой, снижающий вдвое начальное количество частиц. Значения максимального пробега бета-частиц в различных средах близки, поэтому поглощающую способность многих веществ можно характеризовать величиной максимального пробега, определяемой для алюминия, и выражают в г/см2 (поверхностная плотность).
Альфа-частица, обладая большой массой и размером, движется прямолинейно, но путь ее короткий. К концу пробега (в хвосте), удельная плотность ионизации максимальна, после чего ионизация прекращается практически сразу. Ионизирующая способность около 10000–40000 пар ионов на один сантиметр пробега в воздухе. Альфа излучение всегда «мягкое», закона ослабления нет. В конце пути альфа-частица захватывает два электрона и превращается в атом гелия.
При
взаимодействии гамма кванта с веществом,
в зависимости от его энергии, может
произойти фотоэффект (Е
0,25
МэВ), комптон эффект (0,25МэВ
Е
1.022МэВ)
или эффект образования электрон-позитронной
пары (Е
1.022
МэВ).
Интенсивность гамма-излучения при прохождении через вещество снижается в соответствии с экспоненциальным законом:
Il = I0 ·e- l,
где, Il –интенсивность излучения после прохождения слоя вещества толщиной «l», I0 –исходная интенсивность излучения, – справочный коэффициент.
Конечного
побега гамма излучения в веществе нет,
поэтому проникающую способность
характеризуют толщиной слоя половинного
ослабления (d
).