
- •Введение
- •Раздел 2. Статистическая обработка результатов радиометрических измерений
- •2.1. Статистический характер радиоактивного распада
- •2.2. Статистические законы распределения
- •2.3. Статистические характеристики экспериментальных данных
- •Тема 3. Основные радиометрические понятия и определения
- •3.1.Единицы измерения активности и удельных активностей
- •Внесистемные единицы:
- •3.2. Специальные единицы измерения
- •3.3. Взаимодействие излучений с веществом
- •Ионизирующие излучения и их проникающая способность
- •Раздел 4. Методы регистраци ионизирующих излучений
- •4.1. Классификация методов регистрации ионизирующих излучений и основные термины
- •4.2. Основные характеристики детекторов ионизирующего излучения Функция отклика детектора
- •Энергетическое разрешение детекторов
- •Эффективность регистрации
- •4.3. Ионизационный метод регистрацииионизирующего излучения
- •4.3.1. Физические основы обнаружения излучений
- •4.2. Типичная вольт-амперная характеристикака газового разряда
- •4.3. Газовые ионизационные детекторы Основные типы детекторов
- •Методы регистрации без газового усиления
- •Диффузия электронов и ионов
- •Рекомбинация
- •Образование электроотрицательных ионов
- •4.3.3. Ионизационные камеры Ионизационные камеры в токовом режиме Устройство камер
- •Ток в камере при постоянной ионизации
- •Динамические характеристики камеры в токовом режиме
- •Ионизационные камеры в импульсном режиме
- •Форма импульса в сферической камере
- •Временные характеристики
- •Энергетическое разрешение
- •Эффективность регистрации
- •Методы регистрации с газовым усилением
- •4.3.4.Пропорциональные счетчики
- •Примеры использования ионизационных камер и пропорциональных счетчиков
- •Газоразрядные счетчики Гейгера–Мюллера
- •Несамогасящиеся счетчики
- •Самогасящиеся счетчики
Методы регистрации без газового усиления
Для корректного измерения энергии частиц необходимо, чтобы все образовавшиеся электроны и ионы достигли электродов камеры конденсатора. Последнее не всегда осуществляется, поскольку электроны и ионы помимо движения вдоль силовых линий электрического поля находятся в непрерывном беспорядочном тепловом движении, что мешает всем носителям заряда собраться на соответствующие электроды. Кроме того, при соударениях электронов с молекулами образуются электроотрицательные ионы, происходит рекомбинация, ионизация ударом. Все эти явления: и диффузия, и рекомбинация, и образование электроотрицательных ионов – меняют величины среднего тока или импульса.
То, что перечисленные явления имеют существенное значение, убедительно показывает зависимость тока от напряжения для камеры (конденсатора), облучаемой заряженными частицами (рис. 2.1).
В области I поле, создаваемое внешним источником с напряжением u0, еще недостаточно, чтобы все электроны и ионы попадали на собирающие электроды, в области II (область работы ионизационных камер) поле достаточно, чтобы эффекты от рекомбинации и диффузии были пренебрежимо малы.
При дальнейшем увеличении напряжения электроны могут приобретать энергию, достаточную для вторичной ионизации, что приводит к увеличению тока.
Относительная протяженность плато в вольтамперной характеристике существенным образом зависит от газа, наполняющего камеру, давления, температуры, плотности ионизации. При больших давлениях и большой плотности ионизации, особенно в случаях наполнения камер газами с большой вероятностью образования электроотрицательных ионов, вольтамперная характеристика может даже не иметь плато.
Рис. 2.1. Зависимость тока в камере от разности потенциалов на ее
электродах при постоянном ионизационном эффекте
Верхняя граница плато определяется такими величинами напряженности поля в камере, при которых электроны могут приобрести на пути между двумя соударениями энергию, достаточную для ионизации молекул газа. Очевидно, что чем больше свободный пробег электрона и чем ниже потенциал ионизации, тем раньше наступают эффекты вторичной ионизации. Нижняя граница плато зависит от того, насколько велико значение процессов диффузии и рекомбинации. Рассмотрим количественные характеристики процессов диффузии, рекомбинации и образования электроотрицательных ионов.
Диффузия электронов и ионов
Электроны и ионы, как и молекулы любого газа, движутся в среднем всегда в направлении меньшей концентрации частиц данного вида. Такое «среднее движение» обычно характеризуют коэффициентом диффузии. Коэффициент диффузии – это величина, постоянная для данного вида частиц и заданных условий, связывает изменение числа частиц данного вида в единице объема во времени dnldt со скоростью изменения плотности этих же частиц в заданном направлении d2n/dx2, т.е.
Коэффициент
диффузии имеет размерность [см2/сек].
Из
статистической физики известно, что
коэффициент диффузии связан со средней
длиной свободного пробега частиц между
соударениями λ
и средней скоростью между соударениями
.
Эта связь
имеет очень простой вид, если
предполагается, что λ
не зависит от v
и, что при
соударениях имеется равновероятное
распределение частиц по углам после
рассеяния. В этом приближении
или
если ввести
где
–
средний свободный пробег при единичном
давлении; р
– давление.
Коэффициенты
диффузии очень сильно отличаются по
величине для тяжелых ионов и электронов.
Однако различие не только в их абсолютных
значениях. Коэффициенты диффузии для
тяжелых положительных и отрицательных
ионов можно считать независимыми от
внешнего электрического поля. Это
связано с тем, что при умеренных величинах
напряженности полей энергия заряженных
тяжелых ионов мало отличается от энергии
нейтральных молекул, поскольку при
соударениях тяжелых ионов с молекулами
газа происходит интенсивный обмен
энергией (упругие соударения частиц с
равными массами). Если же энергия ионов
мало меняется за счет внешнего поля,
то и величины
и
изменяются
слабо. Для электронов дело обстоит
иначе. Так как в результате упругого
соударения электроны теряют малую долю
своей энергии, то в электрическом поле
средняя энергия электронов будет
зависеть от напряженности электрического
поля и, кроме того, величины
для электронов зависят от их скорости
.
Рост температуры увеличивает среднюю скорость , и коэффициент D повышается. При уменьшении давления возрастает , что также приводит к росту D. Коэффициенты диффузии для положительных и отрицательных тяжелых ионов различаются незначительно. Отличие в величинах D+ и D-, видимо, связано с различным распределением положительных и отрицательных зарядов в атомах среды. Для электронов величины D значительно больше и зависят от отношения напряженности электрического поля к давлению Е/р. Изменение давления при сохранении отношения Е/р меняет коэффициент диффузии для электронов в l/р раз.