
- •1. Волновое движение. Волновая функция. Волновое уравнение
- •2. Одномерное скалярное волновое уравнение.
- •3)Скалярные и векторные волны
- •4)Кинематические характеристики плоской скалярной волны
- •6. Сферическая монохроматическая волна.
- •5. Скалярная плоская монохроматическая волна. Волновая поверхность. Фазовая скорость.
- •7.Условия излучения электромагнитных волн электромагнитными зарядами
- •8. Плоская монохроматическая электромагнитная волна плоская волна
- •9. Энергетические характеристики электромагнитных волн
- •10. Закон сохранения энергии
- •12. Интерференция волн
- •13. Условия наблюдения интерференционной картины, когерентность
- •14.Видность интерференционной картины.
- •15. Получение когерентных волн опыт юнга
- •16. Интерференция монохроматических волн
- •17. Использование явления интерференции для оптических измерений. (по результатам л.Р)
- •18. Дифракция волн
- •Алгоритм решения осесимметричных задач дифракции методом зон Френеля
- •21. Дифракция Фраунгофера
- •22. Дифракция света на длинной прямой щели в приближении Фраунгофера Дифракция света на одной щели
- •23. Спектральный состав и спектральное разложение света. Спектральные приборы. Разрешающая способность.
- •24. Дифракционная решетка. Угловой размер и интенсивность главных максимумов. Разрешающая способность.
- •25. Зоны Френеля. Осесимметричные дифракционные задачи.
- •26. Волновой параметр и его значение для дифракции. Геометрическая оптика.
- •27. Работа выхода. Красная граница фотоэффекта.
- •29. Эффект Комптона.
- •31. Гипотеза де Бройля.
- •32. Корпускулярно-волновой дуализм вещества.
- •33. Опыты Розерфорда. Планетарная модель атома. Опыт Резерфорда. Ядерная модель атома
- •34. Постулаты Бора.
- •35. Теория Боря для атома водорода.
- •36. Переходы между стационарными состояниями атома водорода. Теория Бальмера.
- •37. Фотоионизация атома водорода
- •38. Опыты Франка и Герца
- •39.Волновая функция
- •Нормировка.
- •40.Уравнение Шредингера.
- •Оператор энергии.
- •43. Стационарные состояния замкнутой системы.
- •44. Стационарные состояния свободной частицы.
- •45. Операторы координат и импульса частицы. Оператор импульса
- •Одномерный случай
- •Три измерения
- •Оператор координат
- •46. Коммутирующие и некоммутирующие операторы
- •47. Измерения в квантовой механике.
- •48.Соотношение неопределённостей Гейзенберга.
- •49. Стационарные состояния атома водорода. Квантовые числа. Уравнение Шредингера для атома водорода
- •Квантовые числа
- •50. Стационарные состояния частицы в бесконечно глубокой потенциальной яме прямоугольной формы. Минимальная энергия частицы.
8. Плоская монохроматическая электромагнитная волна плоская волна
ПЛОСКАЯ ВОЛНА - волна, у к-рой направление распространения одинаково во всех точках пространства. Простейший пример - однородная монохроматич. незатухающая П. в.:
где А -
амплитуда,
-
фаза,
-
круговая частота, Т -
период колебаний, k - волновое
число.
Поверхности постоянной фазы (фазовые
фронты)
=
const П. в. являются плоскостями.
При
отсутствии дисперсии, когда фазовая
скорость vф и групповая
скорость vгр одинаковы
и постоянны (vгр = vф = v)
существуют стационарные (т. е. перемещающиеся
как целое) бегущие П. в., к-рые можно
представить в общем виде
где f -
произвольная ф-ция. В нелинейных средах
с дисперсией также возможны стационарные
бегущие П. в. типа (2), но их форма уже не
произвольна, а зависит как от параметров
системы, так и от характера движения волны.
В поглощающих (диссипативных) средах
П. в. уменьшают свою амплитуду по мере
распространения; при линейном затухании
это может быть учтено путём замены в
(1) k на
комплексное волновое число kд
ikм,
гдеkм -
коэф. затухания П. в. Однородная П. в.,
занимающая всё бесконечное пространство,
является идеализацией, однако любое
волновое поле, сосредоточенное в конечной
области (напр., направляемое линиями
передачи или волноводами ),можно
представить как суперпозицию П. в. с тем
или иным пространственным спектром k.
При этом волна может no-прежнему иметь
плоский фазовый фронт, во неоднородное
распределение амплитуды. Такие П. в.
наз. плоскими неоднородными волнами.
Отд. участки сферич. или цилиндрич. волн,
малые по сравнению с радиусом кривизны
фазового фронта, приближённо ведут себя
как П. в.
Поляриза́ция волн — характеристика поперечных волн, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.
В продольной волне поляризация возникнуть не может, так как направление колебаний в этом типе волн всегда совпадают с направлением распространения.[1]
Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды, всегда перпендикулярным к волновому вектору. Волновой вектор показывает направление распространения волны, а вектор поляризации представляет собой вектор напряженности электрического поля. Так что в трёхмерном пространствеимеется ещё одна степень свободы — вращение вокруг волнового вектора.
Причиной возникновения поляризации волн может быть:
несимметричная генерация волн в источнике возмущения;
анизотропность среды распространения волн;
преломление и отражение на границе двух сред.
В общем случае для гармонических волн конец вектора колеблющейся величины описывает в плоскости, поперечной направлению распространения волны, эллипс, и такая поляризация называется эллиптической. Важными частными случаями являются линейная поляризация, при которой колебания возмущения происходят в какой-то однойплоскости, в таком случае говорят о «плоско-поляризованной волне», и круговая или циркулярная поляризация, при которой конец вектора амплитуды описывает окружность в плоскости колебаний, круговая поляризация в зависимости от направления вращения вектора может быть правой или левой.
Поляризация описывается Фигурами Лиссажу и соответствует сложению поперечных колебаний равной частоты.