- •1. Волновое движение. Волновая функция. Волновое уравнение
- •2. Одномерное скалярное волновое уравнение.
- •3)Скалярные и векторные волны
- •4)Кинематические характеристики плоской скалярной волны
- •6. Сферическая монохроматическая волна.
- •5. Скалярная плоская монохроматическая волна. Волновая поверхность. Фазовая скорость.
- •7.Условия излучения электромагнитных волн электромагнитными зарядами
- •8. Плоская монохроматическая электромагнитная волна плоская волна
- •9. Энергетические характеристики электромагнитных волн
- •10. Закон сохранения энергии
- •12. Интерференция волн
- •13. Условия наблюдения интерференционной картины, когерентность
- •14.Видность интерференционной картины.
- •15. Получение когерентных волн опыт юнга
- •16. Интерференция монохроматических волн
- •17. Использование явления интерференции для оптических измерений. (по результатам л.Р)
- •18. Дифракция волн
- •Алгоритм решения осесимметричных задач дифракции методом зон Френеля
- •21. Дифракция Фраунгофера
- •22. Дифракция света на длинной прямой щели в приближении Фраунгофера Дифракция света на одной щели
- •23. Спектральный состав и спектральное разложение света. Спектральные приборы. Разрешающая способность.
- •24. Дифракционная решетка. Угловой размер и интенсивность главных максимумов. Разрешающая способность.
- •25. Зоны Френеля. Осесимметричные дифракционные задачи.
- •26. Волновой параметр и его значение для дифракции. Геометрическая оптика.
- •27. Работа выхода. Красная граница фотоэффекта.
- •29. Эффект Комптона.
- •31. Гипотеза де Бройля.
- •32. Корпускулярно-волновой дуализм вещества.
- •33. Опыты Розерфорда. Планетарная модель атома. Опыт Резерфорда. Ядерная модель атома
- •34. Постулаты Бора.
- •35. Теория Боря для атома водорода.
- •36. Переходы между стационарными состояниями атома водорода. Теория Бальмера.
- •37. Фотоионизация атома водорода
- •38. Опыты Франка и Герца
- •39.Волновая функция
- •Нормировка.
- •40.Уравнение Шредингера.
- •Оператор энергии.
- •43. Стационарные состояния замкнутой системы.
- •44. Стационарные состояния свободной частицы.
- •45. Операторы координат и импульса частицы. Оператор импульса
- •Одномерный случай
- •Три измерения
- •Оператор координат
- •46. Коммутирующие и некоммутирующие операторы
- •47. Измерения в квантовой механике.
- •48.Соотношение неопределённостей Гейзенберга.
- •49. Стационарные состояния атома водорода. Квантовые числа. Уравнение Шредингера для атома водорода
- •Квантовые числа
- •50. Стационарные состояния частицы в бесконечно глубокой потенциальной яме прямоугольной формы. Минимальная энергия частицы.
37. Фотоионизация атома водорода
Фотоионизацией называется процесс, в котором ионизируемые частицы получают энергию ионизации от фотонов.
Если атом (молекула) не возбужден, то энергия ионизирующего фотона Е = hV (V - частота электромагнитного излучения), должна быть не меньше энергии ионизации W. Для всех атомов и молекул газов и жидкостей W такова, что этому условию удовлетворяют лишь фотоны ультрафиолетового и еще более коротковолнового излучения.
Ионизация атома водорода в основном состоянии возможна лишь излучением с энергией кванта, превышающей 13,6 эВ и лежащей далеко в ультрафиолетовой части спектра.
38. Опыты Франка и Герца
Существование дискретных энергетических уровней атома подтверждается опытом Франка и Герца. В опытах использовалась трубка (см. рисунок), заполненная парами ртути при давлении р ≈ 1 мм рт. ст. и три электрода: катод, сетка и анод.
Электроны ускорялись разностью потенциалов U между катодом и сеткой. Эту разность потенциалов можно было изменять с помощью потенциометра П. Между сеткой и анодом тормозящее поле 0,5 В (метод задерживающих потенциалов).
Определялась зависимость тока через гальванометр Г от разности потенциалов между катодом и сеткой U. В эксперименте была получена зависимость, изображенная на графике. Здесь U = 4,86 В – соответствует первому потенциалу возбуждения.
Согласно боровской теории, каждый из атомов ртути может получить лишь вполне определенную энергию, переходя в одно из возбужденных состояний. Поэтому если в атомах действительно существуют стационарные состояния, то электроны, сталкиваясь с атомами ртути, должны терять энергию дискретно, определенными порциями, равными разности энергии соответствующих стационарных состояний атома.
Из опыта следует, что при увеличении ускоряющего потенциала вплоть до 4,86 В анодный ток возрастает монотонно, его значение проходит через максимум (4,86 В), затем резко уменьшается и возрастает вновь. Дальнейшие максимумы наблюдаются при и .
Ближайшим к основному, невозбужденному состоянию атома ртути является возбужденное состояние, отстоящее по шкале энергий на 4,86 В. Пока разность потенциалов между катодом и сеткой меньше 4,86 В, электроны, встречая на своем пути атомы ртути, испытывают с ними только упругие соударения. При = 4,86 эВ энергия электрона становится достаточной, чтобы вызвать неупругий удар, при котором электрон отдает атому ртути всю кинетическую энергию, возбуждая переход одного из электронов атома из нормального состояния в возбужденное. Электроны, потерявшие свою кинетическую энергию, уже не смогут преодолеть тормозящий потенциал и достигнуть анода. Этим и объясняется резкое падение анодного тока при = 4,86 эВ. При значениях энергии, кратных 4,86, электроны могут испытывать с атомами ртути 2, 3, … неупругих соударения. При этом они полностью теряют свою энергию и не достигают анода, т.е. наблюдается резкое падение анодного тока.
Таким образом, опыт показал, что электроны передают свою энергию атомам ртути порциями, причем 4,86 эВ – наименьшая возможная порция, которая может быть поглощена атомом ртути в основном энергетическом состоянии. Следовательно, идея Бора о существовании в атомах стационарных состояний блестяще выдержала проверку экспериментом.
Атомы ртути, получившие при соударении с электронами энергию , переходят в возбужденное состояние и должны вернуться в основное, излучая при этом, согласно второму постулату Бора, квант света с частотой . По известному значению можно вычислить длину волны светового кванта: . Таким образом, если теория верна, то атомы ртути, бомбардируемые электронами с энергией 4,86 эВ, должны являться источником ультрафиолетового излучения с , что действительно обнаружилось в опытах.
Таким образом, опыты Франка и Герца экспериментально подтвердили не только первый, но и второй постулат Бора и сделали большой вклад в развитие атомной физики.
