- •1)Обобщенная схема цвм.
- •2)Автомат Мура.
- •3)Основы анализа логических схем с обратными связями.
- •4)Анализ логических схем с помощью карт Карно.
- •7)Элементарные автоматы. Элементарные автоматы с одним входом.
- •8)Элементарные автоматы с двумя входами.
- •9)Обобщенная схема цифрового автомата.
- •10) Синтез комбинационных схем с помощью сднф и диаграмм Вейча.
- •11)Синтез цифровых автоматов.
- •Дешифраторы (декодеры)
- •15,16) 15 И 16 билеты совместно, про rs – триггеры на и элементах в 5 билете.
- •17)Серии цифровых логических микросхем (мс). Мс выключающие триггеры.
- •18)Синтез триггерных схем.
- •19)Д-триггер.
- •20)Т-триггер.
- •21)Jk-триггер.
- •22)Двойные триггеры.
- •23)Синтез двойного jk-триггера на элементах “и-не”.
- •24)Синтез двойного jk-триггера на элементах “или-не”.
- •25)Синхронный rs-триггер с динамическим управлением.
- •26)Синхронный jk-триггер с динамическим управлением.
- •27)Синтез синхронных триггеров со статическим управлением.
- •28)Регистры.
- •29) Регистр к555ир1
- •30) Регистр с тремя выходными состояниями. Кр 1804 ир1.
- •31) Счетчики. Двоичные суммирующие счетчики с последовательным переносом.
- •33) Вычитающие двоичные счетчики.
- •35)Десятичные счетчики.
- •36)Счетчик с произвольным модулем счета на jk – триггере.
- •37) Счетчики с принудительным насчетом сигналов
- •39)Делители частоты с модулем деления на 3.
- •40)Сумматоры. Сумматор на регистрах и кс суммирования.
- •43)Основные элементы памяти.
- •44)Организация памяти в вычислительной технике.
- •45) Дешифраторы. 3-х разрядный дешифратор на элементах “и”.
7)Элементарные автоматы. Элементарные автоматы с одним входом.
В настоящее время в вычислительной технике, как правило, используются элементарные автоматы, имеющие следующие особенности:
1. Элементарные автоматы являются автоматами Мура с двумя внутренними состояниями;
2. Автомат выдает два различных выходных сигнала, соответствующих двум его внутренним состояниям. В дальнейшем состояния автомата и его выходные сигналы будем обозначать одной буквой Q и кодировать цифрами 0 и 1;
3. Элементарные автоматы могут иметь в общем случае несколько физических входов, на каждый из которых могут подаваться сигналы, закодированные цифрами 0 и 1.
В качестве элементарных автоматов в вычислительной технике используются, в основном, триггеры различных типов:
Т-триггер
D-триггер(триггер задержки)
R-s – триггер с разделенными входами
J-k триггер (универсальный триггер)
В принципе, элементарные автоматы с одним входом это D и T триггеры.
8)Элементарные автоматы с двумя входами.
JK и RS триггеры
RS-триггер
RS-триггером называют автомат Мура с двумя устойчивыми состояниями, имеющий два входа R и S. При S = 1 триггер устанавливается в состояние 1, а при R = 1 – в состояние 0. Одновременная подача двух сигналов, равных 1, запрещена, т.е. R S = 0. В соответствии с состоянием, принимаемым триггером, вход S называет единичным входом, а вход R – нулевым.
Матрица переходов RS-триггера:
R |
S |
Q(t) |
Q(t+1) |
b1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
b2 |
1 |
1 |
Переход триггера из 0 в 0 возможен при двух комбинациях входных сигналов: R = 0, S = 0 и R = 1, S = 0. Поэтому в первой строке матрицы переходов в столбце R поставлен неопределенный коэффициент b1 = 0 v 1. Аналогично переход из состояния 1 в 1 также возможен при двух комбинациях входных сигналов: R = 0, S = 0 и R = 0, S = 1. Поскольку при таком переходе значения сигнала на входе S безразлично, то в нижней строке матрицы переходов в столбце S записан коэффициент b2. По матрице переходов можно построить граф RS-триггера.
Автоматы, которые могут переходить из одного состояния в другое под действием нескольких комбинаций входных сигналов, называются автоматами с избыточной системой переходов. Избыточность можно использовать в процессе синтеза для упрощения схемы, придавая коэффициентам b1 и b2 такие значения, которые позволяют минимизировать число элементов. Поэтому, если схемы двух элементарных автоматов равноценны по сложности, то предпочтение отдают автомату, имеющему большую избыточность системы переходов.
Запишем закон функционирования RS-триггера в аналитическом виде, для чего составим по матрице переходов диаграмму Вейча:
|
SQ(t) |
|||
R |
00 |
01 |
11 |
10 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
- |
- |
Запрещенные комбинации входных сигналов при минимизации заполним единичными значениями.
Тогда
имеем:
JK-триггер
JK-триггером называют автомат Мура с двумя устойчивыми состояниями и двумя входами J и K. При JK = 1 триггер меняет свое состояние на противоположное. В остальных случаях он функционирует в соответствии с таблицей истинности RS-триггера, при этом вход J эквивалентен входу S, а вход K - входу R.
Таблица истинности JK-триггера:
J |
K |
Q(t) |
Q(t+1) |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
Построим диаграмму Вейча и матрицу переходов:
|
KQ(t) |
|||
J |
00 |
01 |
11 |
10 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
J |
K |
Q(t) |
Q(t+1) |
0 |
b1 |
0 |
0 |
1 |
b2 |
0 |
1 |
b3 |
1 |
1 |
0 |
b4 |
0 |
1 |
1 |
Тогда:
.
В интегральной схемотехнике применяются только синхронные JK-триггера, которые при C = 0 сохраняют свое состояние, а при C = 1 работают как асинхронные JK-триггера.
JK-триггер относится к разряду универсальных триггеров, поскольку на его основе можно построить RS-, D- и T-триггера. RS-триггер получается наложением ограничения на комбинацию входных сигналов J = K = 1, так как эта комбинация является запрещенной для RS-триггера. Т-триггер получается путем объединения входов J и K (рис. 5.5). Т-триггер получается путем объединения входов J и K (рис. 5.5). D-триггер строится путем подключения к входу K инвертора, на который подается тот же сигнал, что и на вход J. В этом случае вход J выполняет функцию входа D (рис. 5.6).
|
|
|
Рис. 5.5 |
|
Рис. 5.6 |
