
- •1)Обобщенная схема цвм.
- •2)Автомат Мура.
- •3)Основы анализа логических схем с обратными связями.
- •4)Анализ логических схем с помощью карт Карно.
- •7)Элементарные автоматы. Элементарные автоматы с одним входом.
- •8)Элементарные автоматы с двумя входами.
- •9)Обобщенная схема цифрового автомата.
- •10) Синтез комбинационных схем с помощью сднф и диаграмм Вейча.
- •11)Синтез цифровых автоматов.
- •Дешифраторы (декодеры)
- •15,16) 15 И 16 билеты совместно, про rs – триггеры на и элементах в 5 билете.
- •17)Серии цифровых логических микросхем (мс). Мс выключающие триггеры.
- •18)Синтез триггерных схем.
- •19)Д-триггер.
- •20)Т-триггер.
- •21)Jk-триггер.
- •22)Двойные триггеры.
- •23)Синтез двойного jk-триггера на элементах “и-не”.
- •24)Синтез двойного jk-триггера на элементах “или-не”.
- •25)Синхронный rs-триггер с динамическим управлением.
- •26)Синхронный jk-триггер с динамическим управлением.
- •27)Синтез синхронных триггеров со статическим управлением.
- •28)Регистры.
- •29) Регистр к555ир1
- •30) Регистр с тремя выходными состояниями. Кр 1804 ир1.
- •31) Счетчики. Двоичные суммирующие счетчики с последовательным переносом.
- •33) Вычитающие двоичные счетчики.
- •35)Десятичные счетчики.
- •36)Счетчик с произвольным модулем счета на jk – триггере.
- •37) Счетчики с принудительным насчетом сигналов
- •39)Делители частоты с модулем деления на 3.
- •40)Сумматоры. Сумматор на регистрах и кс суммирования.
- •43)Основные элементы памяти.
- •44)Организация памяти в вычислительной технике.
- •45) Дешифраторы. 3-х разрядный дешифратор на элементах “и”.
43)Основные элементы памяти.
44)Организация памяти в вычислительной технике.
45) Дешифраторы. 3-х разрядный дешифратор на элементах “и”.
Дешифратор (декодер) — комбинационное
устройство, преобразующее
n-разрядный двоичный, троичный или
k-ичный код в
-ичный
одноединичный код, где
-
основание системы
счисления. Логический сигнал,
появляется на том выходе, порядковый
номер которого соответствует двоичному,
троичному или k-ичному коду.
Дешифраторы
являются устройствами, выполняющими
двоичные,
троичные
или k-ичные
логические
функции (операции).
Двоичный дешифратор работает по следующему принципу: пусть дешифратор имеет N входов, на них подано двоичное слово xN − 1xN − 2...x0, тогда на выходе будем иметь такой код, разрядности меньшей или равной 2N, что разряд, номер которого равен входному слову, принимает значение единицы, все остальные разряды равны нулю. Очевидно, что максимально возможная разрядность выходного слова равна 2N. Такой дешифратор называется полным. Если часть входных наборов не используется, то число выходов меньше 2N, и дешифратор является неполным.
Часто дешифраторы дополняются входом разрешения работы E. Если на этот вход поступает единица, то дешифратор функционирует, в ином случае на выходе дешифратора вырабатывается логический ноль вне зависимости от входных сигналов.
Существуют дешифраторы с инверсными выходами, у такого дешифратора выбранный разряд показан нулём.
Функционирование дешифратора описывается системой конъюнкций:
…………………………………………………………
Обратное преобразование осуществляет шифратор.