Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эконометрика.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
978.51 Кб
Скачать

25. Адекватность нелинейной регрессии, ее значимость.

Проверка адекватности моделей, построенных на основе уравнений регрессии, начинается с проверки значимости каждого коэффициента регрессии. Значимость коэффициента регрессии осуществляется с помощью t-критерия Стьюдента (отношение коэффициента регрессии к его средней ошибке):

. Коэффициент регрессии считается статистически значимым, если превышает tтабл - табличное (теоретическое) значение t-критерия Стьюдента для заданного уровня значимости  (0,05) и n-k-1 степеней свободы: , где n - число наблюдений, k - число факторных признаков.

Проверка адекватности всей модели осуществляется с помощью F-критерия и величины средней ошибки аппроксимации .

Значение средней ошибки аппроксимации, определяемой по формуле

не должно превышать 12 - 15 %.

Расчетное значение F-критерия определяется по формуле и сравнивается с табличным:

, где - коэффициент множественной детерминации.

Величина Fтабл находится по таблицам при заданном уровне значимости  (0,05) и числе степеней свободы 1= k, 2= n-k-1. Если FрасчFтабл, связь признается существенной.

26. Классификация уравнений множественной регрессии, их использование в экономике.

Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Если же этим влиянием пренебречь нельзя, то в этом случае следует попытаться выявить влияние других факторов, введя их в модель, т.е. построить уравнение множественной регрессии

,

где – зависимая переменная (результативный признак),

– независимые, или объясняющие, переменные (признаки-факторы).

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов эконометрики. В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике. Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

27. Метод наименьших квадратов в многомерном случае, его геометрическая интерпретация.

Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов некоторых функций от искомых переменных.

Суть метода наименьших квадратов (МНК).

Задача заключается в нахождении коэффициентов линейной зависимости, при которых функция двух переменных а и b   принимает наименьшее значение. То есть, при данных а и b сумма квадратов отклонений экспериментальных данных от найденной прямой будет наименьшей. В этом вся суть метода наименьших квадратов.

Таким образом, решение примера сводится к нахождению экстремума функции двух переменных.

28. Уравнение множественной линейной регрессии.

Линейная модель множественной регрессии выглядит следующим образом:

Y = β0 + β1x1 + β2x2 + …+ βkxk + ε,

где  Y – зависимая переменная (результативный признак);  

x1,…,xk – независимые, или объясняющие переменные;

 0, 1,…, k – коэффициенты регрессии;

  – ошибка регрессии.

2

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]