- •Предмет эконометрики.
- •2 Методология эконометрического исследования. Математическая и эконометрическая модель.
- •4Эконометрическая модель и экспериментальные данные.
- •5Основные этапы и проблемы эконометрического моделирования.
- •7.Точечные оценки параметров распределения.
- •8.Интервальные оценки параметров распределения.
- •9.Понятие статистических гипотез. Доверительная вероятность и уровень значимости. Ошибки первого и второго рода.
- •10.Проверка статистических гипотез о виде распределений.
- •5)Исследование регрессионной модели.
- •10)Оценка параметров множественной регрессии
- •11)Исследование остатков.
- •Вопрос 17. Коэффициент линейной корреляции и его значимость.
- •Вопрос 18. Стандартная ошибка и значимость коэффициентов линейной регрессии.
- •Вопрос 19. Адекватность линейной регрессионной модели и ее значимость.
- •Вопрос 20. Точечное и интервальное прогнозирование по линейной регрессионной модели.
- •Вопрос 21. Экономические задачи, приводящие к нелинейным регрессионным моделям. Кривые Филлипса и Энгеля.
- •22. Внутренне линейные парные регрессионные модели, способы их линеаризации.
- •23. Полиномиальная и параболические регрессии.
- •24. Индексы корреляции и детерминации для парных нелинейных регрессионных моделей, проверка их значимости.
- •25. Адекватность нелинейной регрессии, ее значимость.
- •26. Классификация уравнений множественной регрессии, их использование в экономике.
- •27. Метод наименьших квадратов в многомерном случае, его геометрическая интерпретация.
- •28. Уравнение множественной линейной регрессии.
- •29. Нелинейные уравнения и их линеаризация. Оценки производственных функций Кобба-Дугласа.
- •30. Множественное регрессионное уравнение в стандартизированном масштабе. Матричная форма записи множественной регрессии.
- •31. Методы отбора факторов при построении множественных регрессионных моделей. Мультиколлинеарность факторов, способы её устранения.
- •39.Автокорреляция остатков, вычисление коэффициентов автокорреляции.
- •41 Обобщённый метод наименьших квадратов. Его применение для уменьшения гетероскедастичности и автокорреляции.
- •43.Проблема идентификации
- •44.Оценивание параметров структурной модели. Косвенный, двухшаговый и трёхшаговый метод наименьших квадратов.
- •45.Основные элементы временного ряда
- •50 Статистическая оценка взаимосвязи двух временных рядов. Методы исключения тенденции.
- •51. Коинтеграция временных рядов.
- •52.Общая характеристика моделей с распределённым лагом и моделей авторегрессии.
- •53 Интерпретация параметров моделей с распределённым лагом. Изучение структуры лага и выбор вида модели с распределённым лагом.
Вопрос 18. Стандартная ошибка и значимость коэффициентов линейной регрессии.
Стандартная ошибка является оценкой среднего квадратичного отклонения коэффициента регрессии от его истинного значения. Позволяет получить некоторое представление о форме функции плотности вероятности, однако не несёт информации о том, находится ли полученная оценка в середине распределения (т.е. является точной) или в его «хвосте» (т.е. является относительно неточной).
Стандартные ошибки коэффициентов регрессии используются аналогично стандартной ошибке среднего — для нахождения доверительных интервалов и проверки гипотез. Используем, например, критерий Стьюдента для проверки гипотезы о равенстве коэффициента регрессии нулю, то есть о его незначимости для модели. Статистика Стьюдента: t=b/sb. Если вероятность для полученного значения и n−2 степеней свободы достаточно мала, например, <0,05 — гипотеза отвергается. Напротив, если нет оснований отвергнуть гипотезу о равенстве нулю, скажем b1 — есть основание задуматься о существовании искомой регрессии, хотя бы в данной форме, или о сборе дополнительных наблюдений. Если же нулю равен свободный член b0, то прямая проходит через начало координат и оценка углового коэффициента равна
,
а её стандартной ошибки
Вопрос 19. Адекватность линейной регрессионной модели и ее значимость.
Адекватность регрессионных моделей – это их соответствие фактическим статистическим данным. Регрессионная модель считается адекватной, если теоретические значения зависимой переменной (т.е. предсказанные на основе модели) согласуются с результатами наблюдений.
Исходное предположение для проверки адекватности регрессионной модели.
Зависимость между прогнозируемым (теоретическим) значением результативного признака (ŷ) и факторами (xi) имеет вид ŷ=f(xi)+,
где – некоторая случайная величина, связанная с влиянием неконтролируемых или неучтенных факторов, случайных ошибок измерения.
Из-завозникают ненулевые остатки, т.е. разности между теоретическими и эмпирическими значениями (yi–ŷi).
Предполагается, что эти остатки независимы (некоррелированны) и распределены по нормальному закону с нулевым средним и одинаковой дисперсией. Это предположение легко проверить путем построения диаграммы остатков.
Для адекватной модели, кроме некоррелированности остатков и их нормального распределения, должно выполняться условие гомоскедаксичности, т. е. постоянства дисперсии ошибок для всех наблюдений.
Оценка выполнимости этого условия проводится по графику остатков: если все остатки укладываются в симметричную относительно нулевой линии полосу, то, можно считать, что дисперсия ошибок наблюдений постоянна.
На графике распределения значений зависимой переменной от одной из независимых переменных не должно быть сильных «раздуваний».
Значительное отклонение от этого условия называется гетероскедастичностью. Для оценки гетероскедастичности разработаны и специальные статистические тесты.
Общий подход к проверке адекватности полученной модели
Нахождение остатков, т.е. значения суммы квадратов разностей между наблюдаемыми и предсказанными моделью значениями переменной y: SSe (от SumofSquares).
Остаточная дисперсия:
Скорректированная оценка остаточной дисперсии
Корень квадратный из этого показателя называется стандартной ошибкой оценки
