- •Предмет эконометрики.
- •2 Методология эконометрического исследования. Математическая и эконометрическая модель.
- •4Эконометрическая модель и экспериментальные данные.
- •5Основные этапы и проблемы эконометрического моделирования.
- •7.Точечные оценки параметров распределения.
- •8.Интервальные оценки параметров распределения.
- •9.Понятие статистических гипотез. Доверительная вероятность и уровень значимости. Ошибки первого и второго рода.
- •10.Проверка статистических гипотез о виде распределений.
- •5)Исследование регрессионной модели.
- •10)Оценка параметров множественной регрессии
- •11)Исследование остатков.
- •Вопрос 17. Коэффициент линейной корреляции и его значимость.
- •Вопрос 18. Стандартная ошибка и значимость коэффициентов линейной регрессии.
- •Вопрос 19. Адекватность линейной регрессионной модели и ее значимость.
- •Вопрос 20. Точечное и интервальное прогнозирование по линейной регрессионной модели.
- •Вопрос 21. Экономические задачи, приводящие к нелинейным регрессионным моделям. Кривые Филлипса и Энгеля.
- •22. Внутренне линейные парные регрессионные модели, способы их линеаризации.
- •23. Полиномиальная и параболические регрессии.
- •24. Индексы корреляции и детерминации для парных нелинейных регрессионных моделей, проверка их значимости.
- •25. Адекватность нелинейной регрессии, ее значимость.
- •26. Классификация уравнений множественной регрессии, их использование в экономике.
- •27. Метод наименьших квадратов в многомерном случае, его геометрическая интерпретация.
- •28. Уравнение множественной линейной регрессии.
- •29. Нелинейные уравнения и их линеаризация. Оценки производственных функций Кобба-Дугласа.
- •30. Множественное регрессионное уравнение в стандартизированном масштабе. Матричная форма записи множественной регрессии.
- •31. Методы отбора факторов при построении множественных регрессионных моделей. Мультиколлинеарность факторов, способы её устранения.
- •39.Автокорреляция остатков, вычисление коэффициентов автокорреляции.
- •41 Обобщённый метод наименьших квадратов. Его применение для уменьшения гетероскедастичности и автокорреляции.
- •43.Проблема идентификации
- •44.Оценивание параметров структурной модели. Косвенный, двухшаговый и трёхшаговый метод наименьших квадратов.
- •45.Основные элементы временного ряда
- •50 Статистическая оценка взаимосвязи двух временных рядов. Методы исключения тенденции.
- •51. Коинтеграция временных рядов.
- •52.Общая характеристика моделей с распределённым лагом и моделей авторегрессии.
- •53 Интерпретация параметров моделей с распределённым лагом. Изучение структуры лага и выбор вида модели с распределённым лагом.
4Эконометрическая модель и экспериментальные данные.
Для получения достаточно достоверных и информативных данных о распределении вектора случайной величины необходимо иметь достаточно большую выборку.
Выборка
представляет собой совокупность наборов
(векторов) значений
Как
правило, число наблюдений велико и
значительно превосходит число факторных
переменных. Для получения хороших
результатов должно выполняться
условие
а
для получения удовлетворительных
результатов должно выполняться
условие
Существует такая проблема: наблюдения yi, которые при различных наборах объясняющих переменных рассматриваются как реализации случайных величин Yi, могут в общем случае иметь различные распределения, а это означает, что в конкретной таблице наблюдений для каждой случайной величины будет иметься только одно наблюдение.
В классической эконометрике рассматривают два вида данных:
1. Пространственная выборка или перекрёстные данные – это набор значений показателей, полученный в некоторый момент или за достаточно короткий интервал времени. Таким образом, для пространственной выборки можно говорить, что все ее наблюдения получены примерно в одинаковых условиях.
В
таком случае в дальнейшем Xi можно не
рассматривать как случайные величины.
Если случайные величины Yi для
различных i независимы, то это влечёт
за собой некоррелированность
остатков:
2. Временной или динамический ряд– это выборка наблюдений, в которой важны не только сами наблюдения, но и порядок следования их друг за другом. При этом предполагается, что тип распределения наблюдаемой случайной величины остается неизменным во времени, но его параметр
могут
изменяться.
Модели временных рядов оказываются сложнее моделей пространственной выборки, так как наблюдения во временном ряду в общем случае не являются независимыми и остатки могут коррелировать друг с другом.
5Основные этапы и проблемы эконометрического моделирования.
1-й этап (постановочный). Формируется цель исследования, набор участвующих в модели экономических переменных. В качестве цели эконометрического моделирования обычно рассматривают анализ исследуемого экономического объекта (процесса); прогноз его экономических показателей, имитацию развития объекта при различных значениях экзогенных переменных (отражая их случайный характер, изменение во времени), выработку управленческих решений. При выборе экономических переменных необходимо теоретическое обоснование каждой переменной. Объясняющие переменные не должны быть связаны функциональной или тесной корреляционной зависимостью, так как это может привести к невозможности оценки параметров модели или к получению неустойчивых, не имеющим реального смысла оценок.
2-й этап (априорный). Проводится анализ сущности изучаемого объекта, формирование и формализация априорной (известной до начала моделирования) информации. 3-й этап (параметризация). Осуществляется непосредственно моделирование, т.е. выбор общего вида модели, выявление входящих в нее связей. Основная задача, решаемая на этом этапе, – выбор вида функции f(X) в эконометрической модели. Весьма важной проблемой на этапе эконометрического моделирования является проблема спецификации модели. От того, насколько удачно решена проблема спецификации модели, в значительной степени зависит успех всего эконометрического моделирования. 4-й этап (информационный). Осуществляется сбор необходимой статистической информации – наблюдаемых значений экономических переменных. Здесь могут быть наблюдения, полученные как с участием исследователя, так и без его участия (в условиях активного или пассивного эксперимента). 5-й этап (идентификация модели). Осуществляется статистический анализ модели и оценка ее параметров.
6-й этап (верификация модели). Проводится проверка истинности, адекватности модели. Выясняется, насколько удачно решены проблемы спецификации, идентификации и идентифицируемости модели, какова точность расчетов по данной модели, в конечном счете, насколько соответствует построенная модель моделируемому реальному экономическому объекту или процессу Следует заметить, что если имеются статистические данные, характеризующие моделируемый экономический объект в данный и предшествующие моменты времени, то для верификации модели, построенной для прогноза, достаточно сравнить реальные значения переменных в последующие моменты времени с соответствующими их значениями, полученными на основе рассматриваемой модели по данным предшествующих моментов. Приведенное выше разделение эконометрического моделирования на отдельные этапы носит в известной степени условный характер, так как эти этапы могут пересекаться, взаимно дополнять друг друга.
6.Генеральная совокупность и выборка. Статистический ряд. Графические представления выборки.
Генеральная совокупность, генеральная выборка— совокупность всех объектов(единиц), относительно которых учёный намерен делать выводы при изучении конкретной проблемы.
Генеральная совокупность состоит из всех объектов, которые имеют качества, свойства, интересующие исследователя. Иногда генеральная совокупность — это все взрослое население определённого региона, чаще всего задаётся несколько критериев, определяющих объекты исследования.
Статистический ряд распределения– это упорядоченное распределение единиц совокупности на группы по определённому варьирующему признаку. В зависимости от признака, положенного в основу группировки различают атрибутивные и вариационные ряды распределения:
Атрибутивныминазывают ряды, построенные по качественным признакам.
Вариационнымирядами называют ряды распределения, построенные по количественному признаку.
x |
1 |
4 |
7 |
8 |
10 |
11 |
18 |
20 |
23 |
y |
3 |
5 |
5 |
7 |
9 |
10 |
11 |
14 |
15 |
