Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эконометрика.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
978.51 Кб
Скачать

44.Оценивание параметров структурной модели. Косвенный, двухшаговый и трёхшаговый метод наименьших квадратов.

Коэффициенты структурной модели могут быть оценены раз­ными способами в зависимости от вида системы одновременных уравнений. Наибольшее распространение в литературе получили следующие методы оценивания коэффициентов структурной модели:

  • косвенный метод наименьших квадратов (КМНК);

  • двухшаговый метод наименьших квадратов (ДМНК);

  • трехшаговый метод наименьших квадратов (ТМНК);

  • метод максимального правдоподобия с полной информа­цией (ММП7);

  • метод максимального правдоподобия при ограниченной информации (ММП5).

Косвенный и двухшаговый методы наименьших квадратов рассматриваются как традици­онные методы оценки коэффициентов структурной модели. Косвенный метод наи­меньших квадратов применяется для идентифицируемой систе­мы одновременных уравнений, а двухшаговый метод наимень­ших квадратов — для оценки коэффициентов сверхидентифици-руемой модели. Перечисленные методы оценивания также используются для сверхидентифицируемых систем уравнений

Метод максимального правдоподобия рассматривается как наиболее общий метод оценивания, результаты которого при нормальном распределении признаков совпадают с МНК. Одна­ко при большом числе уравнений системы этот метод приводит к достаточно сложным вычислительным процедурам. Поэтому в качестве модификации используется метод максимального прав­доподобия при ограниченной информации (метод наименьшего дисперсионного отношения.

В отличие от метода максимального правдоподобия в данном методе сняты ограничения на параметры, связанные с функцио­нированием системы в целом. Однако он был практически вытеснен двухшаговым методом наименьших квадратов в связи с гораздо большей простотой последнего Дальнейшим развитием двухшагового метода наименьших квадратов является трехшаговый МНК (ТМНК.

Этот метод оценивания приго­ден для всех видов уравнений структурной модели. Однако при некоторых ограничениях на параметры более эффективным ока­зывается ДМНК

45.Основные элементы временного ряда

Временной ряд — это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени.

Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

- факторы, формирующие тенденцию ряда;

- факторы, формирующие циклические колебания ряда;

- случайные факторы.

При различных сочетаниях в изучаемом явлении или процессе этих факторов зависимость уровней ряда от времени может принимать различные формы.

Каждый временной ряд   складывается из следующих основных компонентов:

1) большинство времен­ных рядов экономических показателей имеют тенденцию, харак­теризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Очевидно, что эти факторы, взятые в отдельности, могут оказывать разнонаправ­ленное воздействие на исследуемый показатель. Однако в сово­купности они формируют его возрастающую или убывающую тенденцию. Аналитически тенденция выражается  некоторой функцией времени, называемой трендом (T).

2)  изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезон­ный характер, поскольку экономическая деятельность ряда от­раслей экономики зависит от времени года. При наличии больших массивов данных за длительные промежутки времени можно в ыделить циклические колебания, связанные с общей динамикой конъюнктуры рынка и т.п.  Например: значения макроэкономиче­ских показателей зависят от того, в какой фазе бизнес-цикла находится экономика. Объем продаж некоторых товаров подвержен сезонным колебаниям (S).

3) некоторые временные ряды не содержат тенденции и цикли­ческой компоненты, а каждый следующий их уровень образуется как сумма среднего уровня ряда и некоторой (положительной или отрицательной) случайной компоненты (Е).

В большинстве случаев фактический уровень временного ря­да можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой вре­менной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Модель, в ко­торой временной ряд представлен как произведение перечислен­ных компонент, называется мультипликативной моделью времен­ного ряда.

Основная задача эконометрического исследования от дельного временного ряда — выявление и придание количествен­ного выражения каждой из перечисленных выше компонент с тем, чтобы использовать полученную информацию для прогно­зирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]