- •Предмет эконометрики.
- •2 Методология эконометрического исследования. Математическая и эконометрическая модель.
- •4Эконометрическая модель и экспериментальные данные.
- •5Основные этапы и проблемы эконометрического моделирования.
- •7.Точечные оценки параметров распределения.
- •8.Интервальные оценки параметров распределения.
- •9.Понятие статистических гипотез. Доверительная вероятность и уровень значимости. Ошибки первого и второго рода.
- •10.Проверка статистических гипотез о виде распределений.
- •5)Исследование регрессионной модели.
- •10)Оценка параметров множественной регрессии
- •11)Исследование остатков.
- •Вопрос 17. Коэффициент линейной корреляции и его значимость.
- •Вопрос 18. Стандартная ошибка и значимость коэффициентов линейной регрессии.
- •Вопрос 19. Адекватность линейной регрессионной модели и ее значимость.
- •Вопрос 20. Точечное и интервальное прогнозирование по линейной регрессионной модели.
- •Вопрос 21. Экономические задачи, приводящие к нелинейным регрессионным моделям. Кривые Филлипса и Энгеля.
- •22. Внутренне линейные парные регрессионные модели, способы их линеаризации.
- •23. Полиномиальная и параболические регрессии.
- •24. Индексы корреляции и детерминации для парных нелинейных регрессионных моделей, проверка их значимости.
- •25. Адекватность нелинейной регрессии, ее значимость.
- •26. Классификация уравнений множественной регрессии, их использование в экономике.
- •27. Метод наименьших квадратов в многомерном случае, его геометрическая интерпретация.
- •28. Уравнение множественной линейной регрессии.
- •29. Нелинейные уравнения и их линеаризация. Оценки производственных функций Кобба-Дугласа.
- •30. Множественное регрессионное уравнение в стандартизированном масштабе. Матричная форма записи множественной регрессии.
- •31. Методы отбора факторов при построении множественных регрессионных моделей. Мультиколлинеарность факторов, способы её устранения.
- •39.Автокорреляция остатков, вычисление коэффициентов автокорреляции.
- •41 Обобщённый метод наименьших квадратов. Его применение для уменьшения гетероскедастичности и автокорреляции.
- •43.Проблема идентификации
- •44.Оценивание параметров структурной модели. Косвенный, двухшаговый и трёхшаговый метод наименьших квадратов.
- •45.Основные элементы временного ряда
- •50 Статистическая оценка взаимосвязи двух временных рядов. Методы исключения тенденции.
- •51. Коинтеграция временных рядов.
- •52.Общая характеристика моделей с распределённым лагом и моделей авторегрессии.
- •53 Интерпретация параметров моделей с распределённым лагом. Изучение структуры лага и выбор вида модели с распределённым лагом.
44.Оценивание параметров структурной модели. Косвенный, двухшаговый и трёхшаговый метод наименьших квадратов.
Коэффициенты структурной модели могут быть оценены разными способами в зависимости от вида системы одновременных уравнений. Наибольшее распространение в литературе получили следующие методы оценивания коэффициентов структурной модели:
косвенный метод наименьших квадратов (КМНК);
двухшаговый метод наименьших квадратов (ДМНК);
трехшаговый метод наименьших квадратов (ТМНК);
метод максимального правдоподобия с полной информацией (ММП7);
метод максимального правдоподобия при ограниченной информации (ММП5).
Косвенный и двухшаговый методы наименьших квадратов рассматриваются как традиционные методы оценки коэффициентов структурной модели. Косвенный метод наименьших квадратов применяется для идентифицируемой системы одновременных уравнений, а двухшаговый метод наименьших квадратов — для оценки коэффициентов сверхидентифици-руемой модели. Перечисленные методы оценивания также используются для сверхидентифицируемых систем уравнений
Метод максимального правдоподобия рассматривается как наиболее общий метод оценивания, результаты которого при нормальном распределении признаков совпадают с МНК. Однако при большом числе уравнений системы этот метод приводит к достаточно сложным вычислительным процедурам. Поэтому в качестве модификации используется метод максимального правдоподобия при ограниченной информации (метод наименьшего дисперсионного отношения.
В отличие от метода максимального правдоподобия в данном методе сняты ограничения на параметры, связанные с функционированием системы в целом. Однако он был практически вытеснен двухшаговым методом наименьших квадратов в связи с гораздо большей простотой последнего Дальнейшим развитием двухшагового метода наименьших квадратов является трехшаговый МНК (ТМНК.
Этот метод оценивания пригоден для всех видов уравнений структурной модели. Однако при некоторых ограничениях на параметры более эффективным оказывается ДМНК
45.Основные элементы временного ряда
Временной ряд — это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени.
Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:
- факторы, формирующие тенденцию ряда;
- факторы, формирующие циклические колебания ряда;
- случайные факторы.
При различных сочетаниях в изучаемом явлении или процессе этих факторов зависимость уровней ряда от времени может принимать различные формы.
Каждый
временной ряд
складывается
из следующих основных компонентов:
1) большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Очевидно, что эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они формируют его возрастающую или убывающую тенденцию. Аналитически тенденция выражается некоторой функцией времени, называемой трендом (T).
2) изучаемый
показатель может быть подвержен
циклическим колебаниям. Эти колебания
могут носить сезонный характер,
поскольку экономическая деятельность
ряда отраслей экономики зависит от
времени года. При наличии больших
массивов данных за длительные промежутки
времени можно в
ыделить
циклические колебания, связанные с
общей динамикой конъюнктуры рынка и
т.п. Например: значения макроэкономических
показателей зависят от того, в какой
фазе бизнес-цикла находится экономика.
Объем продаж некоторых товаров подвержен
сезонным колебаниям (S).
3) некоторые временные ряды не содержат тенденции и циклической компоненты, а каждый следующий их уровень образуется как сумма среднего уровня ряда и некоторой (положительной или отрицательной) случайной компоненты (Е).
В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда.
Основная задача эконометрического исследования от дельного временного ряда — выявление и придание количественного выражения каждой из перечисленных выше компонент с тем, чтобы использовать полученную информацию для прогнозирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов.
