Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эконометрика.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
978.51 Кб
Скачать

39.Автокорреляция остатков, вычисление коэффициентов автокорреляции.

Автокорреляцией называется корреляция, возникающая между уровнями изучаемой переменной. Это корреляция, проявляющаяся во времени. Наличие автокорреляции чаще всего характерно для данных, представленных в виде временных рядов.

Для характеристики динамики изменения экономических показателей часто используется понятие автокорреляции, которая характеризует не только взаимозависимость уровней одного и того же ряда, относящихся к разным моментам наблюдений, но и степень устойчивости развития процесса во времени, величину оптимального периода прогнозирования и т.п.

Степень тесноты статистической связи между уровнями временного ряда, сдвинутыми на t единиц времени определяется величиной коэффициента корреляции , так как измеряет тесноту связи между уровнями одного и того же временного ряда, поэтому его принято называть коэффициентом автокорреляции.При этом длину временного смещения называют обычно лагом (t).

Коэффициент автокорреляции вычисляют по формуле

Порядок коэффициентов автокорреляции определяет временной лаг: первого порядка (при t= 1), второго порядка (при t= 2) и т. д.

40)Метод ранговой корреляции Спирмена позволяет определить тесноту (силу) и направление корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков.

Описание метода

Для подсчета ранговой корреляции Спирмена необходимо располагать двумя рядами значений, которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же набору признаков (например, личностные профили по 16-факторному опроснику Р. Б. Кеттелла, иерархии ценностей по методике Р. Рокича, последовательности предпочтений в выборе из нескольких альтернатив и др.);

3) две групповые иерархии признаков;

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков. Как правило, меньшему значению признака начисляется меньший ранг.

Ограничения коэффициента ранговой корреляции

1) по каждой переменной должно быть представлено не менее 5 наблюдений;

2) коэффициент ранговой корреляции Спирмена при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений.

Расчет коэффициента ранговой корреляции Спирмена

Чтобы произвести автоматический расчет коэффициента ранговой корреляции Спирмена, необходимо выполнить действия в два шага:

Шаг 1. Ввести данные двух признаков А и В;

Шаг 2. Получить ответ.

41 Обобщённый метод наименьших квадратов. Его применение для уменьшения гетероскедастичности и автокорреляции.

Обобщённый метод наименьших квадратов— метод оценки параметров регрессионных моделей, являющийся обобщением классического метода наименьших квадратов. Обобщённый метод наименьших квадратов сводится к минимизации «обобщённой суммы квадратов» остатков регрессии — , где  — вектор остатков,  — симметрическая положительно определенная весовая матрица. Обычный МНК является частным случаем обобщённого, когда весовая матрица пропорциональна единичной.

Необходимо отметить, что обычно обобщённым методом наименьших квадратов называют частный случай, когда в качестве весовой матрицы используется матрица, обратная ковариационной матрице случайных ошибок модели.

Сущность обобщённого МНК

Известно, что симметрическую положительно определенную матрицу можно разложить как , где P- некоторая невырожденная квадратная матрица. Тогда обобщённая сумма квадратов может быть представлена как сумма квадратов преобразованных (с помощью P) остатков .

Для линейной регрессии это означает, что минимизируется величина:

где , то есть фактически суть обобщённого МНК сводится к линейному преобразованию данных и применению к этим данным обычного МНК. Если в качестве весовой матрицы используется обратная ковариационная матрица случайных ошибок (то есть ), преобразование P приводит к тому, что преобразованная модель удовлетворяет классическим предположениям (Гаусса-Маркова), следовательно оценки параметров с помощью обычного МНК будут наиболее эффективными в классе линейных несмещенных оценок. А поскольку параметры исходной и преобразованной модели одинаковы, то отсюда следует утверждение — оценки ОМНК являются наиболее эффективными в классе линейных несмещенных оценок (теорема Айткена). Формула обобщённого МНК имеет вид:

Ковариационная матрица этих оценок равна: