- •Предмет эконометрики.
- •2 Методология эконометрического исследования. Математическая и эконометрическая модель.
- •4Эконометрическая модель и экспериментальные данные.
- •5Основные этапы и проблемы эконометрического моделирования.
- •7.Точечные оценки параметров распределения.
- •8.Интервальные оценки параметров распределения.
- •9.Понятие статистических гипотез. Доверительная вероятность и уровень значимости. Ошибки первого и второго рода.
- •10.Проверка статистических гипотез о виде распределений.
- •5)Исследование регрессионной модели.
- •10)Оценка параметров множественной регрессии
- •11)Исследование остатков.
- •Вопрос 17. Коэффициент линейной корреляции и его значимость.
- •Вопрос 18. Стандартная ошибка и значимость коэффициентов линейной регрессии.
- •Вопрос 19. Адекватность линейной регрессионной модели и ее значимость.
- •Вопрос 20. Точечное и интервальное прогнозирование по линейной регрессионной модели.
- •Вопрос 21. Экономические задачи, приводящие к нелинейным регрессионным моделям. Кривые Филлипса и Энгеля.
- •22. Внутренне линейные парные регрессионные модели, способы их линеаризации.
- •23. Полиномиальная и параболические регрессии.
- •24. Индексы корреляции и детерминации для парных нелинейных регрессионных моделей, проверка их значимости.
- •25. Адекватность нелинейной регрессии, ее значимость.
- •26. Классификация уравнений множественной регрессии, их использование в экономике.
- •27. Метод наименьших квадратов в многомерном случае, его геометрическая интерпретация.
- •28. Уравнение множественной линейной регрессии.
- •29. Нелинейные уравнения и их линеаризация. Оценки производственных функций Кобба-Дугласа.
- •30. Множественное регрессионное уравнение в стандартизированном масштабе. Матричная форма записи множественной регрессии.
- •31. Методы отбора факторов при построении множественных регрессионных моделей. Мультиколлинеарность факторов, способы её устранения.
- •39.Автокорреляция остатков, вычисление коэффициентов автокорреляции.
- •41 Обобщённый метод наименьших квадратов. Его применение для уменьшения гетероскедастичности и автокорреляции.
- •43.Проблема идентификации
- •44.Оценивание параметров структурной модели. Косвенный, двухшаговый и трёхшаговый метод наименьших квадратов.
- •45.Основные элементы временного ряда
- •50 Статистическая оценка взаимосвязи двух временных рядов. Методы исключения тенденции.
- •51. Коинтеграция временных рядов.
- •52.Общая характеристика моделей с распределённым лагом и моделей авторегрессии.
- •53 Интерпретация параметров моделей с распределённым лагом. Изучение структуры лага и выбор вида модели с распределённым лагом.
30. Множественное регрессионное уравнение в стандартизированном масштабе. Матричная форма записи множественной регрессии.
Множественная регрессия - уравнение связи с несколькими независимыми переменными
где у- зависимая переменная (результативный признак);
- независимые
переменные (факторы).
Для построения уравнения множественной регрессии чаще используются следующие функции:
• линейная
• степенная
• экспонента
• гипербола
Можно использовать и другие функции, приводимые к линейному виду.
уравнение регрессии в стандартизованном масштабе:
,
где
,
-
стандартизованные переменные;
-
стандартизованные коэффициенты
регрессии.
К уравнению множественной регрессии в стандартизованном масштабе применим МНК. Стандартизованные коэффициенты регрессии (β-коэффициенты) определяются из следующей системы уравнений:
Связь
коэффициентов множественной регрессии
со
стандартизованными коэффициентами
описывается
соотношением
Параметр
a определяется как
Матричная запись множественной линейной модели регрессионного анализа:
Y = Xb + e , где Y - случайный вектор - столбец размерности (n x 1) наблюдаемых значений результативного признака (y1, y2,..., yn); X - матрица размерности [n x (k+1)] наблюдаемых значений аргументов; b - вектор - столбец размерности [(k+1) x 1] неизвестных, подлежащих оценке параметров (коэффициентов регрессии) модели; e - случайный вектор - столбец размерности (n x 1) ошибок наблюдений (остатков).
На практике рекомендуется, чтобы n превышало k не менее, чем в три раза.
31. Методы отбора факторов при построении множественных регрессионных моделей. Мультиколлинеарность факторов, способы её устранения.
Важным этапом построения уже выбранного уравнения множественной регрессии является отбор и последующее включение факторных признаков.
Наиболее широкое применение получили следующие методы построения уравнения множественной регрессии:
- метод исключения;
- метод включения;
- шаговый регрессионный анализ.
Каждый из этих методов по-своему решает проблему отбора факторов, давая в целом близкие результаты - отсев факторов из полного его набора (метод исключения), дополнительное введение фактора (метод включения), исключение ранее введенного фактора (шаговый регрессионный анализ). В процедуре отсева факторов наиболее широко используется матрица частных коэффициентов корреляции.
При отборе факторов рекомендуется, кроме всего прочего, пользоваться следующим правилом: число включаемых факторов должно быть в 6-7 раз меньше объема совокупности, по которой строится регрессия.
Наиболее приемлемым способом отбора факторных признаков является шаговая регрессия (шаговый регрессионный анализ). Сущность метода шаговой регрессии заключается в реализации алгоритмов последовательного "включения", "исключения" или "включения-исключения" факторов в уравнение регрессии и последующей проверке их статистической значимости.
Наличие мультиколлинеарности между признаками вызывает:
- искажению величины параметров модели, которые имеют тенденцию к завышению, чем осложняется процесс определения наиболее существенных факторных признаков;
- изменению смысла экономической интерпретации коэффициентов регрессии.
Для устранения мультиколлинеарности используется метод исключения переменных. Этот метод заключается в том, что высоко коррелированные объясняющие переменные (факторы) устраняются из регрессии и она заново оценивается. Отбор переменных, подлежащих исключению, производится с помощью коэффициентов парной корреляции. Опыт показывает, что если \ryj\ > 0,70, то одну из переменных можно исключить, но какую переменную исключить из анализа, решают исходя из управляемости факторов на уровне предприятия.
37)
При оценке параметров уравнения
регрессии применяется МНК. При этом
делаются определенные предпосылки
относительно составляющей.
,
которая представляет собой в
уравнении
ненаблюдаемую
величину.
Исследования
остатков
предполагают
проверку наличия следующих пяти
предпосылок МНК:
1) случайный характер остатков. С этой целью строится график отклонения остатков от теоретических значений признака. Если на графике получена горизонтальная полоса, то остатки представляют собой случайные величины и применение МНК оправдано. В других случаях необходимо применить либо другую функцию, либо вводить дополнительную информацию и заново строить уравнение регрессии до тех пор, пока остатки не будут случайными величинами.
2)
нулевая средняя величина остатков,
т.е.
,
не зависящая от хi. Это выполнимо для
линейных моделей и моделей, нелинейных
относительно включаемых переменных.
С этой целью наряду с изложенным графиком
зависимости остатков
от
теоретических значений результативного
признака ух строится график зависимости
случайных остатков
от
факторов, включенных в регрессию хi .
Если остатки на графике расположены в
виде горизонтальной полосы, то они
независимы от значений xj. Если же график
показывает наличие зависимости
и
хjто модель неадекватна. Причины
неадекватности могут быть разные.
3. Гомоскедастичность — дисперсия каждого отклонения одинакова для всех значений хj. Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность. Наличие гетероскедастичности можно наглядно видеть из поля корреляции.
4. Отсутствие автокорреляции остатков. Значения остатков распределены независимо друг от друга. Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений. Отсутствие автокорреляции остаточных величин обеспечивает состоятельность и эффективность оценок коэффициентов регрессии.
5. Остатки подчиняются нормальному распределению.
В тех случаях, когда все пять предпосылок выполняются, оценки, полученные по МНК и методу максимального правдоподобия, совпадают между собой. Если распределение случайных остатков не соответствует некоторым предпосылкам МНК, то следует корректировать модель, изменить ее спецификацию, добавить (исключить) некоторые факторы, преобразовать исходные данные, что в конечном итоге позволяет получить оценки коэффициентов регрессии aj, которые обладают свойством несмещаемости, имеют меньшее значение дисперсии остатков, и в связи с этим более эффективную статистическую проверку значимости параметров регрессии.
39)
