
- •Учебное пособие
- •Оглавление
- •1. Информационные технологии и автоматизированное проектирование в строительстве
- •1.1 Понятие об информационных технологиях
- •1.2 Свойства информации
- •1.3 Виды работы с информацией
- •1.4 Специальные информационные системы в строительстве
- •2. Автоматизированное проектирование объектов строительства.
- •2.1 Порядок разработки и состав проектной документации
- •2.2 Проектные организации, развитие компьютерной технологии проектирования
- •2.3 Проектные функции
- •2.4 Понятие сапр, принципы построения
- •2.5 Структура сапр: обеспечивающие и проектирующие подсистемы
- •2.6 Задание на проектирование объектов
- •2.7 Распределение проектных работ
- •2.8 Изыскательские работы
- •2.9 Организационно-технологическая подготовка проектирования, планирование проектных работ
- •Форма технологической карты к проектированию
- •Календарный план проектирования здания
- •2.10 Технологические линии проектирования
- •3. Архитектурно - строительные программы.
- •3.1 ArchiCad
- •3.1.2 Параметрические конструкции
- •3.1.3 Объектная технология ArchiCad
- •3.1.4.Новшества ArchiCad
- •3.1.5 Автоматические направляющие
- •3.2. Autodesk Revit Architecture
- •3.2.1 Возможности Revit Architecture
- •3.2.2 Встроенный модуль концептуального формообразования
- •3.3 Google SketchUp
- •3.4 AutoCad Civil 3d
- •3.5 GeoniCs Топоплан-Генплан-Сети-Трассы-Сечения-Геомодель
- •3.5.1.Модуль «Топоплан»
- •3.6 GeoniCs Изыскания (rgs, RgsPl)
- •3.7 Allplan
- •3 .7.6 Allplan Инженерные системы
- •3.7.6.1 Отопление.
- •3.7.6.1.1 Расчет систем отопления.
- •3.7.6.1.2 Спецификации.
- •3.7.6.1.3 Расчет теплопотерь и комфортное тепло
- •3.7.6.1.4 Ведомости помещений
- •3.7.6.1.5 Подбор радиаторов
- •3.7.6.2.3 Расчет канальной сети
- •3.7.6.2.4 Количественные оценки
- •3.7.6.3 Водоснабжение
- •4. Программные комплексы для расчета и проектирования конструкций
- •4.1. Пк «лира»
- •4.1.1 Основные модули
- •4.1.2.Специальные поцессоры
- •4.1.3. Пакет Прикладных Программ пк Лира
- •4.1.3.1 Пп Геометрические характеристики сечений
- •4.1.3.2 Прикладная Программа (пп) Статика. Динамика. Устойчивость
- •4.1.3.3. Пп Железобетонные конструкции
- •4.1.3.4 Пп Стальные конструкции
- •4.1.3.5 Пп Нагрузки и воздействия
- •4.1.3.6 Пп Основания и фундаменты
- •4.1.3.7 Пп Каменные и армокаменные конструкции
- •4.1.3.8 Пп Деревянные конструкции
- •Программный комплекс scad Office
- •4.2.1 Кристалл
- •4.2.2 Арбат
- •4.2.3 Камин
- •4.2.4 Декор
- •4.2.5 Запрос
- •4.2.6 Откос
- •4.2.7 ВеСт
- •4.2.8 Монолит
- •4.2.10 Кросс
- •4.2.11 Конструктор сечений
- •4.2.12 Консул
- •4.2.13 Тонус
- •4.2.15 КоКон
- •4.2.16 Куст
- •Мономах
- •Калипсо – Комплексная Автоматизированная Линия Проектирования Строительных Объектов
- •4.5 Stark es
- •4.6 MicroFe
- •4.7 Robot Millennium
- •4.8 Маэстро
- •Маэстро-а
- •Маэстро-к
- •Маэстро-с
- •Программы для расчета оснований и фундаментов
- •5.2 Программа «Фундамент»
- •6. Универсальные программные комплексы
- •6.1 Ansys
- •6.2 Nastran
- •6.3 Cosmos
- •7. Программы для технологии и организации строительного производства
- •7.1 Программа гектор: арм ппр.
- •7.1.1 "Гектор: проектировщик – строитель"
- •7.1.2 "Гектор: сметчик – строитель"
- •7.2 Microsoft Project
- •7.3 Гранд-Смета
- •8. Программы для выполнения раздела безопасности жизнедеятельности.
- •8.1 Ситис вим
- •8.2 Программа: ситис: Флоутек
- •8.3 Программа "токси"
- •8.4 Нсис пожарная безопасность
- •9. Программы для экологов. Экологические расчеты
- •Разработка проектов пдв, пдс, пноолр, сзз Экологические платежи
- •9.1 Программа "упрза Эколог"
- •9.2 Программа "Эколог-шум"
- •9.3. Программа "Шум вентсистем"
- •9.4. Программа "Норма"
- •9.5. Программа "Риски"
- •Сводные расчеты загрязнения атмосферы Система "Эколог Город"
- •Программа отображения результатов на электронной карте города – «Экологическая карта»
- •Программы расчета загрязнения атмосферы выбросов загрязняющих веществ предприятиями (перспективная разработка).
- •9.6. Программа "Средние"
- •Приложения Рекомендуемая литература по курсу
- •Контрольные вопросы по курсу
- •Компьютерные методы проектирования и расчета зданий
2.10 Технологические линии проектирования
Технологической линией проектирования (ТЛП) является организационно-техническая система, которая объединяет комплекс специализированных структурных подразделений проектной организации, обеспечивающий оперативную и высокоэффективную разработку проектно-сметной документации поточным методом в условиях нормированной технологии.
Технологические линии проектирования появились в результате обобщения опыта автоматизации проектных работ. Опыт показал, что для повышения эффективности проектирования необходимы коренные изменения организации проектных работ. Такие изменения нашли отражение в следующих особенностях организации проектирования.
Проектные работы выполняются поточным методом, с линейной последовательностью отдельных видов работ, без возращения к ранее выполненным частям проекта.
Проектная документация выполняется с объектной привязкой к определенным типам зданий с разрешенными вопросами согласования между отдельными частями проекта.
Все части проекта, элементы зданий получают кодированное (цифровое) описание, с последующей внутримашинной передачей информации на всех этапах разработки проектно-сметной документации.
Выполнение проектных работ осуществляется с жесткой последовательностью всех процедур в условиях нормированной технологии, с нормированными затратами всех ресурсов.
Технологическим нормированием проектных работ занимается специальный отдел в структуре проектных организаций с ТЛП.
Первые ТЛП были созданы в Киеве в 1970 г. – это ТЛП крупнопанельного домостроения (ТЛП КПД) и ТЛП КОРТ.
Функциональная структура ТЛП представлена на рис.2.7.
Проектно-сметная документация на ТЛП оформляется на машинных и бумажных носителях.
К настоящему времени разработаны и функционируют, кроме ТЛП, КПД и КОРТ – технологические линии проектирования [15]:
ТЛП жилища – для разработки типовых зданий и блок-секций, для разработки индивидуальных проектов;
АТЛП МНИИТЭП – для проектирования крупнопанельных жилых домов, общественных зданий;
ТЛП промзданий – для проектирования промышленных зданий, их инженерных сетей, организации строительства и смет.
Эксплуатация ТЛП показала высокую эффективность их применения в строительстве, что подтверждается следующими показателями:
– снижение общей себестоимости проектирования на 3-8 %;
– снижение заводской себестоимости изготовления элементов на 3-8 %;
– сокращение числа марок элементов с 350-500 до 18-120;
– снижение общих трудозатрат на 8-12 %;
– снижение заводских трудозатрат на 15-35 %.
Рис.2.7. Функциональная структура ТЛП КПД
3. Архитектурно - строительные программы.
3.1 ArchiCad
ArchiCAD базируется на концепции «виртуального здания», впервые разработанной компанией Graphisoft еще в 1984 году. Из года в год, от версии к версии, все мощнее и удобнее становится пакет, совершенствуются инструментальные средства и методы работы с ними, но его основополагающая идея остается неизменной.
В соответствии с концепцией «виртуального здания» архитектору предоставляется полный набор ориентированных на архитектурно-строительное проектирование специализированных инструментов, при помощи которых создается «виртуальное здание» – объемная модель, соответствующая реальному зданию, но существующая только в памяти компьютера. Из этой виртуальной модели извлекается разнообразная информация:
чертежи (поэтажные планы, разрезы и фасады, узлы и детали и т. п.);
результаты расчета количественных показателей (ведомости, спецификации, экспликации и т. п.);
презентационные материалы (фото, реалистические изображения, анимационные фильмы, сцены виртуальной реальности);
файлы различных форматов для обмена данными со смежниками, заказчиками, консультантами и другими участниками процесса проектирования, пользующимися другими программами (AutoCAD, Microstation, 3D Studio и др.).
«Виртуальное здание» позволяет работать не с отдельными, никак не связанными между собой чертежами, а с моделью реального здания, где все элементы тесно взаимодействуют друг с другом, благодаря чему все изменения, вносимые в проект, автоматически отображаются и в документации.
Такой подход позволяет уже на ранних этапах проектирования обнаружить и устранить большинство проблем, которые обязательно проявились бы на более поздних этапах проектирования или, что еще хуже, на строительной площадке.
Кроме того, концепция «Виртуального здания» гарантирует, что все чертежи точно соответствуют друг другу, поскольку представляют собой разные способы отображения одной и той же модели, а не отдельные, не связанные друг с другом изображения.