
- •Предмет и метод статистики
- •4Понятие и виды группировок.Принципы построения группировок.Количественные и атрибутивные признаки. Групприровочный признак.Интервальные группировки.
- •5.Понятие статистического показателя.Абсолютные,относительные и среднии показатели.Средняя арифметическая,гармоническая,геометрическая,квадратическая простая и взвешенная.
- •7)Понятие рядов распределения. Дискретные и интервальные ряды распределения
- •1.1. Атрибутивные ряды распределения
- •1.2. Вариационные ряды распределения
- •8. Показатели вариации и способы их расчета. Виды дисперсии в совокупности, распределенной на части. Правило сложения дисперсии.
- •9. Моменты распределения. Показатели формы распределения.
- •13. Понятие доверительного интервала для среднего и доли генеральной совокупности и его определение по показателям выборки.
- •14. Понятие доверительного интервала для среднего и доли генеральной совокупности и его определение по показателям выборки
- •15. Понятие корреляционной зависимости. Поле корреляции. Методы выявления корреляционных связей. Коэффициент Фехнера.
- •17. Понятие ранга. Коэффициент ранговой корреляции Спирмена.
- •18. Уравнение регрессии и его виды. Определение параметров линейного уравнения регрессии. Коэффициент эластичности.
- •2 Типа взаимосвязей между х и у:
- •19. Теоретический коэффициент детерминации и теоретическое корреляционное отношение.
- •20. Оценка значимости коэффициента регрессии и уравнения связи.
- •Вопрос 21. Понятие временного ряда. Виды прогнозов. Общая характеристика методов прогнозирования.
- •Вопрос 22. Аналитические показатели динамики временных рядов.
- •Вопрос 23. Средние показатели динамики временных рядов. Прогнозирование по среднему абсолютному приросту и среднему темпу роста.
- •Вопрос 24. Стационарные временные ряды, проверка ряда на стационарность, построение доверительного интервала для прогноза.
- •Вопрос 25. Выявление основной тенденции в рядах динамики Метод скользящей средней.
- •35. Статистика материальных оборотных средств
- •36.Статистика трудовых ресурсов.
- •26. Определение параметров уравнения тренда. Прогнозирование на основе тренда. Доверительный интервал прогноза.
- •1) Индекс физического объема продукции:
- •2) Индекс цен:
- •3) Индекс себестоимости:
- •29. Индексы Ласпейреса, Пааше и Фишера. Индекс Эджворта и их экономический смысл.
- •30. Индексы фиксированного и переменного состава. Индекс структурных сдвигов. Взаимосвязь индексов и их экономическое содержание.
- •Вопрос 31. Система национальных счетов (снс)
- •Вопрос 32. Макроэкономические показатели и их взаимосвязь. Расчет ввп производственным, распределительным методом и методом конечного использования
- •Вопрос 33. Национальное богатство.
- •Вопрос 34. Статистика основных фондов (оф).
- •35. Статистика материальных оборотных средств
- •36.Статистика трудовых ресурсов.
8. Показатели вариации и способы их расчета. Виды дисперсии в совокупности, распределенной на части. Правило сложения дисперсии.
Вариация — это различия индивидуальных значений признака у единиц изучаемой совокупности. По степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию.
Изменение вариации признака в совокупности осуществляется с помощью абсолютных и относительных показателей.
Абсолютные показатели вариации включают:
размах вариации
среднее линейное отклонение
дисперсию
среднее квадратическое отклонение
Размах вариации — это разность между максимальным и минимальным значениями признака
Он показывает пределы, в которых изменяется величина признака в изучаемой совокупности.
Для
обобщенной характеристики различий в
значениях признака вычисляют средние
показатели вариации, основанные на
учете отклонений от средней арифметической.
За отклонение от средней принимается
разность
.
Среднее линейное отклонение — это средняя арифметическая из абсолютных отклонений отдельных значений признака от средней.
Среднее линейное отклонение простое:
Среднее линейное отклонение взвешенное применяется для сгруппированных данных:
Среднее линейное отклонение в силу его условности применяется на практике сравнительно редко (в частности, для характеристики выполнения договорных обязательств по равномерности поставки; в анализе качества продукции с учетом технологических особенностей производства).
Среднее квадратическое отклонение
Наиболее совершенной характеристикой вариации является среднее квадратическое откложение, которое называют стандартом (или стандартным отклонение). Среднее квадратическое отклонение ( ) равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической:
Между средним квадратическим и средним линейным отклонениями в условиях нормального распределения имеет место следующее соотношение: ~ 1,25.
Среднее квадратическое отклонение, являясь основной абсолютной мерой вариации, используется при определении значений ординат кривой нормального распределения, в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик, а также при оценке границ вариации признака в однородной совокупности.
Дисперсия - представляет собой средний квадрат отклонений индивидуальных значений признака от их средней величины.
Дисперсия простая:
Более удобно вычислять дисперсию по формуле:
которая получается из основной путем несложных преобразований. В этом случае средний квадрат отклонений равен средней из квадратов значений признака минус квадрат средней.
Среднее
квадратическое отклонение
равно
квадратному корню из среднего квадрата
отклонений отдельных значений признака
от средней арифметической.
Относительные показатели вариации включают:
Коэффициент осцилляции
Относительное линейное отклонение (линейный коэффициент варианции)
Коэффициент вариации (относительное отклонение)
Сравнение вариации нескольких совокупностей по одному и тому же признаку, а тем более по различным признакам с помощью абсолютных показателей не представляется возможным. В этих случаях для сравнительной оценки степени различия строят относительные показатели вариации. Они вычисляются как отношения абсолютных показателей вариации к средней:
Коэффициент осцилляции |
|
Относительное линейное отклонение |
|
Коэффициент вариации |
|
Общая дисперсия характеризует вариацию признака во всей совокупности, сложившуюся под влиянием всех факторов и условий.
Межгрупповая
дисперсия
измеряет
систематическую вариацию, обусловленную
влиянием фактора, по которому произведена
группировка:
Внутригрупповая дисперсия оценивает вариацию признака, сложившуюся по влиянием других, неучитываемых в данном исследовании факторов и независящую от фактора группировки. Она определяется как средняя из групповых дисперсий.
Все
три дисперсии (
)
связаны между собой следующим равенством,
которое известно как правило сложения
дисперсий:
на
этом соотношении строятся показатели,
оценивающие влияние признака группировки
на образование общей вариации. К ним
относятся эмпирический коэффициент
детерминации (
)
и эмпирическое корреляционное отношение
(
)